

BIONUMERICS Tutorial: ANOVA and MANOVA

1 Introduction

The central goal of an *analysis of variance* (ANOVA) is to investigate the differences between the means of a (set of) quantitative variable(s) across a number of groups. The main ingredients of an ANOVA are:

- **Explanatory variables:** one or more qualitative variables that determine the group membership of an entry. Therefore, explanatory variables sometimes are called *grouping variables*. An explanatory variable takes values from a finite set of possibilities, i.e. is categorical or binary.
- **Response variables:** one or more quantitative variables. A response variable is treated as a real number.

With only one response variable, the ANOVA is called *univariate*, whereas for more than one response variable the ANOVA is called *multivariate* (or MANOVA).

In this tutorial some of the features of the BIONUMERICS *MANOVA* window will be illustrated using a sample data set (see 2). The different tests and plots present in the *MANOVA* window will not be covered in detail in this tutorial. For detailed information we refer to the BIONUMERICS reference manual.

2 Example data

To illustrate the full possibilities of the *MANOVA* window, a separate data set is made available via the Applied Maths website (https://www.applied-maths.com/download/sample-data, click on "MANOVA sample data").

The sample data set describes an experiment in which the optimal conditions for growth and product formation were determined for a bacterial strain in a broth with a certain carbon source. Two different nitrogen sources were evaluated (yeast extract and ammonium chloride) and three different incubation temperatures (30, 35 and 37°C). These represent the explanatory variables (or grouping variables) in the MANOVA. The experiments were done in 24-well micro titer plates of which four wells were not inoculated. Therefore, 20 replicates are available for each condition. Bacterial growth was evaluated after 24 hours using dry cell weight (in mg/ml) and optical density at 600 nm. The yield of a desired fermentation product was determined using gas chromatography and expressed in mM. The data are available as a tab-delimited text file, designated MANOVA.TXT. It is recommended to create a new, separate database.

3 Preparing the database

1. In the *BIONUMERICS Startup* window, create a new database as described in the tutorial "Creating a new database".

In the new empty database, we will first create a new character type experiment:

- In the Main window, highlight the Experiment types panel and select Edit > Create new object... (+).
- 3. Highlight *Character type* and press < OK >.
- 4. Enter a name for the character type, e.g. "Fermentations" and press < Next>.
- 5. Check *Numerical values*, set two decimal digits and press <*Next*> (see Figure 1).

New character type		?	Х
	What kind of data do you want to use in th type? O Binary data (1/0) Numerical values Enter the number of decimal digits you wark 2	ne characte	r
	< <u>B</u> ack <u>N</u> ext >	Cano	cel

Figure 1: New character type experiment.

6. Set 100 as *Max value* and press < *Finish*> to complete the creation of the new character type.

The new character type is added to the *Experiment types* panel.

- 7. In the *Main* window, select *File* > *Import...* (, Ctrl+I).
- 8. In the *Import* dialog box, expand *Character type data*, highlight *Import fields and characters* (text file) and press < *Import*>.
- 9. Browse for the MANOVA.TXT file and press < *Next*>.
- 10. Highlight the row that corresponds to *Experiment* and press < *Edit destination*>.
- 11. In the *Edit data destination* dialog box, highlight *Key* and press < *OK* >.
- 12. Highlight the rows that correspond to *Temperature*, *N-source* and *Replica* using the Shift-key, and press < *Edit destination*>.
- 13. In the *Edit data destination* dialog box, highlight *Entry info field* and press < OK >.
- 14. In the *Create new* dialog box that appears, leave the default names unaltered and press <*OK*>. Confirm the action.
- 15. Highlight the three remaining file fields and press *< Edit destination* > again.

Figure 2: Link to character type experiment.

- 16. In the *Edit data destination* dialog box, highlight *Fermentations* (located under *Character value*) and press < *OK* > (see Figure 2).
- 17. In the *Create new* dialog box that appears, leave the default names unaltered and press <*OK*>. Confirm the action.

The Import rules dialog box should now look like in Figure 3.

	Source	Destination type	Destination	
File field	Experiment	Entry information	Кеу	
File field	Temperature	Entry information : Entry info field	Temperature	
File field	N-source	Entry information : Entry info field	N-source	
File field	Replica	Entry information : Entry info field	Replica	
File field	Dry weight	Character value : Fermentations	Dry weight	
File field	Optical density	Character value : Fermentations	Optical density	

18. Press <*Next*> and <*Finish*>.

19. Specify a template name (e.g. Fermentation) and press < OK >.

The template is automatically selected.

20. Press <*Next*> and <*Finish*> to import the information in the database.

The example data are imported in the database (see Figure 4), with the growth conditions (= explanatory variables) as information fields and the growth parameters (= response variables) as character values.

ANOVA and MANOVA - BioNumerics						-	
File Edit Database Analysis Scripts Window Help							
Experiment types	Database entries					Comparisons	
							0
	1 + [] ⊗ €		<all entries=""></all>	10		+ ∆ ⊗ €,	Ē 🖳
# Name Type 🔻	Key	Temperature	N-source	Replica 🔷 🔻	1	Name	Modified 🔻
1 Fermentations Character types	batch_30_a_A2	30	ammonium chloride	1	• •		
	batch_30_a_A3	30	ammonium chloride	2	•		
	batch_30_a_A4	30	ammonium chloride	3	•		
	batch_30_a_A5	30	ammonium chloride	4	•		
	batch_30_a_A6	30	ammonium chloride	5	•		
	batch_30_a_B2	30	ammonium chloride	6	•		
< >	batch_30_a_B3	30	ammonium chloride	7	•	<	>
	batch_30_a_B4	30	ammonium chloride	8	•		
Entry fields Database design	batch_30_a_B5	30	ammonium chloride	9	•	Identification projects Decision	i networks
	batch_30_a_B6	30	ammonium chloride	10	•	29 + PA @ F	
	batch_30_a_C2	30	ammonium chloride	11	•		
Name Field type	batch_30_a_C3	30	ammonium chloride	12	•	Name	Modified
All Temperature Fixed	batch_30_a_C4	30	ammonium chloride	13	•		
All N-source Fixed	batch_30_a_C5	30	ammonium chloride	14	•		
All Replica Fixed	batch_30_a_C6	30	ammonium chloride	15	•		
	batch_30_a_D2	30	ammonium chloride	16	•		
	batch_30_a_D3	30	ammonium chloride	17	•		
	batch_30_a_D4	30	ammonium chloride	18	•		
	batch_30_a_D5	30	ammonium chloride	19	•	<	>
Fingerprint files Power assemblies Apportations	batch_30_a_D6	30	ammonium chloride	20	•	Alignments BLAST projects	Chrom Comp
	batch_35_a_A2	35	ammonium chloride	1	•		Comon. Comp.
·□ + □ ⊗ 🖧 I 🛍 🔍 <all finge<="" td=""><td>batch_35_a_A3</td><td>35</td><td>ammonium chloride</td><td>2</td><td>•</td><td> + 12 ⊗ 6% </td><td>的 🖾</td></all>	batch_35_a_A3	35	ammonium chloride	2	•	+ 12 ⊗ 6%	的 🖾
File name Experiment type Link 🔻	batch_35_a_A4	35	ammonium chloride	3	•	Name	Modified 🖵
	batch_35_a_A5	35	ammonium chloride	4	•		
	Datch_35_a_A6	35	ammonium chioride	5			
	Datch_35_a_62	35	ammonium chioride	-			
	batch_35_8_83	25	ammonium chloride	0	1		
	batch_35_a_B4	35	ammonium chloride	0			
	batch 35 a B6	35	ammonium chloride	10			
		55	animorium chioride	>	< >	<	 >

Figure 4: The Main window after import of the data.

21. Double-click on the **Fermentations** experiment type in the *Experiment types* panel of the *Main* window.

The *Character type* window opens listing the three characters in the *Characters* panel (see Figure 5).

🖆 Character type 'Ferment	ations'			_	×
File Settings Characters	Fields Mapping W	indow Help			
e itt te ta	0				
Characters					
+ 🛛 🗟 🗠	⊠× ↑ ↓ ↓	All Characters>	ບ		
Character	Enabled	Min.	Max.	Color scale	•
Dry weight	✓	0.00	100.00		^
Optical density	×	0.00	100.00		
Product yield	×	0.00	100.00		
					~
Characters Mapping					
Comparison settings					
					~
Fermentations setting	gs				
Fermentations: numeric	al values, closed data s	et (3 characters)			\sim
Comparison settings Cross	linke Attachmente				
Companson settings Cross	Attaciments				
Character type Fermentations					

Figure 5: The character type experiment with three characters.

22. Close the Character type window.

4 Comparison window

- 1. In the *Main* window select all entries (e.g. using the Ctrl+A keyboard shortcut).
- 2. Create a new comparison by highlighting the *Comparisons* panel in the *Main* window and selecting *Edit* > *Create new object...* (+).
- 3. Select *File* > *Save* (B, Ctrl+S). Enter e.g. *All fermentations* as comparison name and press <*OK*>.
- 4. Click on the onext to the experiment name **Fermentations** in the *Experiments* panel to display the fermentation data in the *Experiment data* panel.

Initially, the character values are displayed as colors according to the color scale defined for each character.

5. Select *Characters* > *Show values* () to show the corresponding character values for all entries in the comparison (see Figure 6).

Figure 6: The Comparison window.

6. Press the F4- key to clear any selection in the Comparison window.

5 Performing a MANOVA

1. To start a MANOVA, select *Statistics* > *MANOVA...* or press the button and select *MANOVA* from the menu that appears.

The *Manova analysis* dialog box pops up (Figure 7).

For the example data, we will calculate a *two-way* (with two explanatory variables) *multivariate* analysis of variance (MANOVA):

 In the Manova analysis dialog box, select N-source and Temperature as categorical Explanatory variables and select all characters of the Fermentations character type as Response variables (see Figure 7).

anova a	nalysis			?	×
Project n	ame				
Name:	MANOVA analysis				
Explanal Select a	tory/grouping variables maximum of 2 variables:	*	Response variables		
Covariar Us Us Us Us	nce type e full covariance matrix e only individual variances e PCA to determine significant variability	Covari	ance type options		
Show	images				
			ок	Can	ncel

Figure 7: The Manova analysis dialog box.

3. Leave *Use full covariance matrix* checked and press <*OK*> to calculate a MANOVA analysis with the specified components.

The MANOVA window pops up consisting of four different pages, displayed in tabbed view: *Exploratory data analysis*, *Testing model assumptions*, *Analysis of variance*, *Canonical discriminants*.

One can navigate from one page to the other with the ▶ and ▲ buttons (menu commands *Edit* > *Go to next page* or *Edit* > *Go to previous page*) or by clicking on the corresponding tab.

Each page in the *MANOVA* window contains a number of sections, represented in a hierarchical view. Sections can be collapsed and their content hidden by clicking on the small "-" (minus) sign that precedes the section name.

5.1 Exploratory data analysis

In the *Exploratory data analysis page* of the *MANOVA* window (Figure 8), the basic elements of a MANOVA are introduced: *Groups*, *Group means*, *Histograms* and *Covariance matrices*.

In the groups section of our example data set, it can be seen that the example data set contains in total six groups: three temperature groups (30, 35, and 37°C), multiplied with the two N-source groups (ammonium chloride and yeast extract). Each group contains 20 samples.

- 4. Click within the groups table (or any other table in the *MANOVA* window). As a result, the table pops up in its own window (see Figure 9).
- 5. Select *File* > *Exit* in the *MANOVA Table* window to close it.

For each of the groups in the ANOVA analysis, the mean value for each of the response variables

🖆 MANOVA analysis: MANOVA analysis								_		×
File Edit Window Help										
☞ # ◀ ▶ 🖪 🗗 🖻	1									
Exploratory data analysis The exploratory data analysis introduces the basic ele o Groups: The set of input entries is divided into Means: For every group, the vector of mean o Covariance matrices: The covariance matrix	SIS ements of the mult o groups based of values for the res ces describe the o	ivariate analy n the categor ponse variab lata variabilit;	vsis of vari ical variabl les is comp y for each	ance. es. puted. Histogra group.	ms give a first in	npression of the differe	ences between groups.			Â
⊡• Groups										
The groups in the dataset are based on the categor	N-source ammoniur ammoniur yeast ext yeast ext yeast ext Overall	N-source' and " N-source ammonium ammonium yeast extra yeast extra yeast extra yeast extra n chloride 3 n chloride 3 n chloride 3 n chloride 3 ract 3 ract 3	emperatur chloride 3 chloride 3 chloride 3 ict 3 ict 3 emperatur 0 5 7 0 5 7	e' The distributer Temperature 30 35 37 37 37 37 37 37 37 37 37 37	tion of the in total Sample size Co 20 20 20 20 20 20 20 20 20 20 20 20 20	al 120 input entries over elors ← ← ← ← ← ← ← ← ←	r the groups is given in th	e table below.		
□ • Histograms									_	
The histograms give a first impression of the distrib outliers.	ution of the data,	and the diffe	rences in d	istribution betv	veen the groups	. Moreover, they also g	give a primary indication f	or the presence o	f	
N-s	source	Temperature	Dry	weight	Optical densit	ty Product yiek	d			
am	monium chloride	30								
am	monium chloride	35								v
Exploratory data analysis Testing model assumptions	s Analysis of v	ariance Ca	nonical dis	criminants						*
					_			_		

Figure 8: The MANOVA window, Exploratory data analysis page.

🖆 Table from MANOVA								
File Edit Window Help								
N-source	Temperature	Sample size	Colors 🗨					
ammonium chloride	30	20	(image)					
ammonium chloride	35	20	(image)					
ammonium chloride	37	20	(image)					
yeast extract	30	20	(image)					
yeast extract	35	20	(image)					
yeast extract	37	20	(image)					
<			>					

Figure 9: The *MANOVA Table* window, showing the groups in the ANOVA analysis in a grid view.

(in our example data set: Dry weight, Optical density and Product yield) is shown in a table. This gives a first indication how different or similar the group means are.

The group means as such do not give an impression of the spread of the data. Therefore, histograms are drawn for each group - response variable combination. Per response variable, the same X-axis scale is used (global scale). Therefore, the distribution of the values can be visually compared over the different groups.

6. Click on a histogram, to call the MANOVA Image window for the corresponding group.

Figure 10: The univariate distribution plot for an ANOVA group in the *MANOVA Image* window, with the *Histogram panel* and the *Cumulative distribution panel* activated.

From the *Histograms*, we can learn that the within-group variability of the Dry weight measurements is high in relation to the differences between the group means. Therefore, it will be hard to obtain significant conclusions from this variable. Further examination of the histograms reveals a few possible outliers, for example the low value in the Optical density histogram for the 35°C - ammonium chloride group.

7. Select *File* > *Exit* to close the *MANOVA Image* window.

For each of the groups in the ANOVA analysis, a matrix of covariances is shown.

- 8. Click on any of the covariance matrices to pop up the covariance matrix in its own window.
- 9. Select *File* > *Exit* to close the window again.
- 10. In the *MANOVA* window, press the **>** button to go to the next page: the *Testing model assumptions page*.

5.2 Testing model assumptions

In the *Testing model assumptions page* of the *MANOVA* window (Figure 11), the concordance of the data with the model assumptions is verified. Two assumptions are made: **normality** and **homoscedasticity**.

MANOVA analysis: MANOVA analysis	-		×
File Edit Window Help			
Testing the model assumptions The validity of the analysis of variance tests depends on two assumptions. Normality: The data needs to be drawn from a multivariate normal distribution. Homoscedasticity: the multivariate data has to be homoscedastic. If the above requirements are not met, transformations might be an option.			^
⊟⊸ Testing normality 🖨			
B - Multivariate QQ-plot			
For every group, the multivariate quantile plot plots quantiles of a chi-squared distribution against Mahalanobis distances.			
ammonium chloride 30 35 37 yeast extract ammonium chloride arrow arrow arrow The correlation coefficients for the above plots give a goodness-of-fit measure. 30 35 37 ammonium chloride 30 35 37 ammonium chloride 30 35 37 José 0.988 0.912 0.983 ammonium chloride 30 35 37			
→ Univariate normality tests To test the hypothesis of multivariate normality, two series of univariate tests have been performed: • for each response variable, and • for each principal component with nonzero variance. The familywise corrected p-value derived from these two series of tests is an indicator for multivariate normality in all groups simultaneously. Familywise corrected p-value derived for the response variables			
For every group, the univariate quantile-quantile plot plots quantiles of a nomal distribution against the sample quantiles.			
N-source Temperature Dry weight Optical density Product yield ammonium chloride 30			~
Exploratory data analysis Testing model assumptions Analysis of variance Canonical discriminants	_	_	

Figure 11: The MANOVA window, Testing model assumptions page.

For the test of the model assumptions as a whole and for each of the individual tests, a *p*-value is displayed as a colored dot to the right of the test name. The color of the dot ranges from

green (high probability that the assumption is correct) over yellow to red (low probability that the assumption is correct). When one hovers over the dot with the mouse, the actual *p*-value is shown.

- 11. Click on any plot to display it in its own window.
- 12. Click within any table to open the table in its own window.

In our example data set, outliers can be detected in the 35° C - ammonium chloride group, by looking at e.g. the Univariate QQ-plot of Optical density or at the corresponding correlation coefficient in the table. The same observation can be made in the Univariate quantile plot of Optical density and the *p*-value of the corresponding KS-test.

Before we can decide to omit or include this outlier, we should have a closer look at the actual data:

- 13. Open the Univariate quantile plot of Optical density for the 35°C ammonium chloride group by clicking on this plot in the *Testing model assumptions page*. The plot opens in its own window.
- 14. In the *MANOVA Image* window, select *Edit* > *Show labels* > *Entry key*. The outlier corresponds to the entry with key batch_35_a_C6.
- 15. Go to the underlying *Comparison* window and click on the eye button () next to the **fermentations** character type in the *Experiments* panel to display the character data in the *Experiment data* panel. Show the character values by clicking the me button.

By looking at the actual character values for the outlier, it becomes clear that all three values (Dry weight, Optical density, and Product yield) are abnormally low for that specific reaction. Most probably, something went wrong during inoculation of that well, so the reaction can safely be omitted from the analysis.

- 16. Clear any selection in the *Comparison* window with the **F4** key and select the outlier.
- 17. Press the 🗱 button to remove the selected entry from the comparison.
- 18. Save and close the *Comparison* window.
- 19. Open the **All fermentations** comparison again and call the MANOVA analysis from the *Analyses* panel.

In the *Groups* section on the *Exploratory data analysis page*, it can be seen that the 35°C - ammonium chloride group now contains only 19 samples.

20. Press the > button to go to the *Testing model assumptions page*.

It can be seen that the *p*-values for the tests of the model assumptions are now much better.

21. Press the • button to go to the next page: the *Analysis of variance page*.

5.3 Analysis of variance

In the *Analysis of variance page* of the *MANOVA* window (Figure 12), the actual analysis of variance is done.

The following observations can be made for the example data on the *Analysis of variance page* (see Figure 12):

The low *p*-value in the **Analysis of variance** section indicates that the null hypothesis can be rejected: there is at least one pair of groups with a different mean, for at least one of the response variables.

File Edit Window Help	
Analysis of variance	^
The applicate bat hypothesis concerns the equality of the mean vectors across the provide	
Null hypothesis The mean vectors of all the groups are identical.	
Alternative hypothesis At least one of the mean vectors is different from the others.	
e-∗Analysis of variance	
The analysis of variance table below gives an assessment of the test hypothesis based on Wilk's lambda likelihood ratio F-test.	
Degrees of freedom 15, 306.824	
F-statistic 22.052	
p-vaue 0% The sum of sources matrices leading to these test results can be found in the "Sum of sources matrices" section	
B - Variable and interaction significance	
Ine influence of each of the explanatory Variables individually is tested by performing a one-way analysis of variable. Variable I N-source Variable Temperature	
Degrees of freedom 3, 115 Degrees of freedom 6, 228	
P-statistic 1/6.3/5 P-statistic 1.204 p-value 0% ● p-value 2.5% ●	
In a muture of the interaction between the two explanatory variables is obtained by comparing the model without interaction (but with both explanatory variables) to the complete model (containing both explanatory variables) and their interaction).	
Variables N-source, Temperature	
F-statistic 2.558	
p-value 2.0%	
The effect of one of the two explanatory variables while compensating for the other variable, is computed by comparing the model with the variable to be compensated for with the complete model (containing both	
variables and their interaction).	
Variable of interest I - source Variable of interest i emperature Compensated variable i Temperature Compensated variable II-source	
Degrees of freedom 3, 115 Degrees of freedom 6, 228	
P-statistic 199.3.35 P-statistic 3.288 p-value 0% ● 0-value 0.4% ●	
B - Univariate analyses	
For each of the response variables, univariate tests assess the significance of the explanatory variables separately and jointly.	
Response variable N-source Temperature ANOVA Test statistic Differences between groups	
bry weigin 9:3% 85.6% 2.3.0% 1.400 ammonium chioride 0.607 0.120 -0.210	
yeast extract 0.331 -0.155 0.526	
Optical density 0% ● 11.8% ● 0% ● 101.457 30 35 37	
ammonian charter 4, 243 - 323	
	× .
Exploratory data analysis Testing model assumptions Analysis of variance Canonical discriminants	

Figure 12: The MANOVA window, Analysis of variance page.

From the one-way ANOVA done in the *Variable and interaction significance* section, it can be concluded that the nitrogen source is more significant than the temperature. Furthermore, both variables are likely to behave independently of each other.

From the **Univariate analyses**, it can be seen that the N-source is a significant explanatory variable according to the Optical density and Product yield measurements. A possible relation exists between Temperature and Optical density and between N-source and Dry weight. Most probably no relation exists between Temperature and Product yield. Furthermore, it can be concluded that Dry weight does not have much predictive value. This is in concordance with the observation of high within-group variability and the relative small differences between group means made earlier in the *Exploratory data analysis page*.

22. In the *MANOVA* window, press the button to go to the next page: the *Canonical discriminants* page.

5.4 Canonical discriminants

In the *Canonical discriminants page* of the *MANOVA* window (Figure 13), a canonical discriminant analysis is performed. Discriminant analysis is very similar to PCA, in a sense that it tries to maximize the difference between groups by making linear combinations of the original directions. However, while PCA calculates the best discriminating components without reference to groups, discriminant analysis calculates the best discriminating components for user-defined groups, i.e.

formed by the explanatory variables. The best discriminating components are called discriminants.

Figure 13: The MANOVA window, Canonical discriminants page.

Following observations can be made for the example data on the *Canonical discriminants page* (see Figure 13):

In the *Components* section, it can be seen that the most important component (or discriminant), i.e. the one that discriminates best between the groups formed by the explanatory variables, relies most on the Optical density response variable.

In the *Pairwise plots* where Discriminant 1 is included (1 vs. 2 and 1 vs. 3), a clear separation of the entries according to the N-source is obtained (see Figure 14). In the plot of Discriminant 2 vs. 3, no separation is obtained.

6 Conclusion

The MANOVA analysis performed so far can be the starting point for further (M)ANOVA analyses to explore the example data set, e.g. given a certain N-source (either ammonium chloride or yeast extract), is there an effect of the temperature on the optical density? What happens if the incubation temperatures are categorized differently, e.g. low (30°C) and high (35 and 37°C) temperature? Can we actually learn something from the dry weight or should the dry weight measurements just be omitted from the setup of future experiments?

Figure 14: Discriminant 1 plotted versus Discriminant 2 in the example data, colored by N-source.