

BIONUMERICS Tutorial:

Importing and processing Agilent 2100 BioAnalyzer curve files

1 Aim

The 2100 BioAnalyzer is a capillary electrophoresis instrument from the company Agilent (https: //www.agilent.com/). The generated electropherograms can be exported from the Agilent 2100 BioAnalyzer software in csv format and imported in BIONUMERICS after installation of the *Import fingerprint tools plugin*. In this tutorial the installation of the *Import fingerprint tools plugin* and the import and processing of Agilent 2100 BioAnalyzer curve files is covered.

2 Sample data

Two batches of Agilent 2100 BioAnalyzer curve files can be downloaded from the Applied Maths website (https://www.applied-maths.com/download/sample-data, click on "Agilent 2100 Bio-Analyzer curve files"). These example csv files will be used to illustrate the import and processing steps in this tutorial. Each csv file contains the full densitometric curve for a single profile, with some additional meta data.

When exporting data from the Agilent 2100 BioAnalyzer software make sure to check **Sample data** ("Creates csv files containing the sample data, one file per sample") in the "Electrophoresis Export Options" dialog. It does not matter whether **aligned sample data** or **unaligned sample data** are exported, since the data are normalized in BIONUMERICS anyway. **Result tables** need not to be checked.

3 Preparing the database

1. Create a new database (see tutorial "Creating a new database") or open an existing database.

Installing a plugin in a BIONUMERICS database is done from the *Plugins* dialog box (see Figure 1), which can be called from the *Main* window by selecting *File* > *Install / remove plugins...* (\square).

Once a plugin is installed, it is marked with a green V-sign. It can be removed again with the *<Deactivate>* button.

If the selected plugin is documented, pressing <*Show Manual*> will open its manual in the *Help* window.

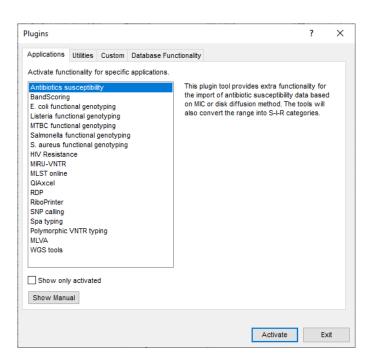


Figure 1: The *Plugins* dialog box.

Proceed as follows to install the *Import fingerprint tools plugin*, starting from the *Plugins* dialog box:

- 2. Select the Utilities tab in the Plugins dialog box.
- 3. Select the Import fingerprint tools plugin in the list and press the <Activate> button.
- 4. Confirm the installation of the plugin.

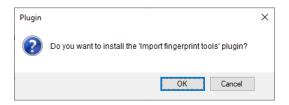


Figure 2: Confirm installation of the *Import fingerprint tools plugin*.

5. Confirm the installation of the plugin and press < OK >.

Once the plugin is successfully installed, it is marked with a green V-sign in the *Plugins* dialog box (see Figure 3).

- 6. Close the *Plugins* dialog box.
- 7. Close and reopen the database to activate the features of the Import fingerprint tools plugin.

Initially, a new fingerprint type experiment needs to be created which will hold the imported Agilent 2100 BioAnalyzer curve data.

- 8. In the *Main* window, click on + in the toolbar of the *Experiment types* panel and select *Finger-print type* from the list (see Figure 4).
- Press < OK >, enter a name, for example "Agilent 2100 Bioanalyzer" and press < Next > (see Figure 5).

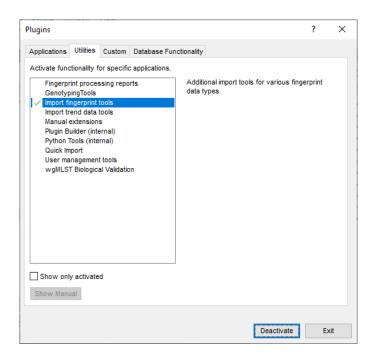


Figure 3: Installed plugin.

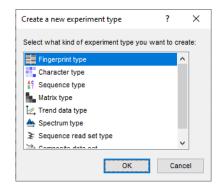


Figure 4: The Create a new experiment type dialog box.

New fingerprint type		?	×
	This wizard will help you create a new in a name for the fingerprint type and c Fingerprint type name: Agilent 2100 BioAnalyzer		e. Fill
	< <u>B</u> ack <u>N</u> ext >	Can	cel

Figure 5: Specify an experiment name.

In the page of the *New fingerprint type* wizard, make sure that *Two-dimensional TIFF files* is selected and select the dynamic range of the data: i.e. *8-bit* for the example files (see Figure 6). Press < *Next*>.

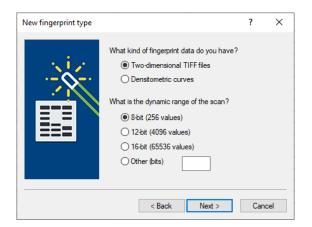


Figure 6: Fingerprint type settings.

11. Press <*Next*> twice without altering the settings and press <*Finish*> to complete the creation of the new fingerprint type.

The *Experiment types* panel now lists the fingerprint type **Agilent 2100 Bioanalyzer**. The two reference positions, corresponding to the upper and lower marker will be defined during the import of the first fingerprint file (see 4.1).

4 Importing BioAnalyzer curve files

4.1 First time import

Since it is the first time that we will import Agilent 2100 BioAnalyzer csv files in our BIONUMERICS database, an *import template* should be created. After the first import, each subsequent import action will be much faster, since the saved import template can simply be re-used (see 4.2).

1. Select *File* > *Import...* (, Ctrl+I) to call the *Import* dialog boxn (see Figure 7).

Import	? ×
Import data Select the kind of data to import:	Import fingerprint curves from Agilent 2100 BioAnalyzer csv export files.
⊕ 월 Data exchange	Manage import templates
1	Import Close

Figure 7: The Import dialog box.

2. Select *Import BioAnalyzer curves* under *Fingerprint type data* and press <*Import*> to start with the import of the data.

The *Import Agilent 2100 Bioanalyzer data* wizard page appears. Since a separate fingerprint file will be created for each import batch, it makes sense to select all samples from a single chip.

3. Browse to the downloaded and unzipped example data folder Agilent and select all Agilent 2100 BioAnalyzer csv files in the Chip01 folder (see Figure 8). Press < **Next**>.

If you are importing your own data sets, make sure not to select any *_Results.csv files, as these have a very different format from the curve data files (*_Ladder.csv and *_Sample.csv files).

Import BioAnalyzer da	ta	?	×
Input Select BioAnalyz	er curve files to import.		
Select curve file(s):	 \01_DiversiLab System_2018-05-11_14-03-40_Ladder.c \01_DiversiLab System_2018-05-11_14-03-40_Sample1 \01_DiversiLab System_2018-05-11_14-03-40_Sample2 \01_DiversiLab System_2018-05-11_14-03-40_Sample3 \01_DiversiLab System_2018-05-11_14-03-40_Sample4 \01_DiversiLab System_2018-05-11_14-03-40_Sample4 \01_DiversiLab System_2018-05-11_14-03-40_Sample5 \01_DiversiLab System_2018-05-11_14-03-40_Sample6 \01_DiversiLab System_2018-05-11_14-03-40_Sample7 \01_DiversiLab System_2018-05-11_14-03-40_Sample8 \01_DiversiLab System_2018-05-11_14-03-40_Sample9 × 13 file(s), less than 1 Mb 	Browse Delete Delete All	
Fingerprint file name:	Chip01		
	< Back Next >	Canc	el

Figure 8: Select curve files from Chip01.

The *Import rules* dialog box is displayed. Agilent 2100 BioAnalyzer csv files provide meta data as they were entered in the Agilent software. Each piece of information can be linked to a destination: either an entry information field or a fingerprint information field in BIONUMERICS.

In this example, we will store all meta data from the csv files into BIONUMERICS entry information fields:

- 4. Click on the first file field in the list ("Data File Name") to highlight it. While holding the **Shift**-key, click on the last file field ("Number of Events") to highlight all file fields.
- 5. Press the <*Edit destination*> button.
- 6. In the *Edit data destination* dialog box, click on *Entry info field* (see Figure 9) and press < *OK* >.
- 7. Press < OK > in the Create new dialog box and confirm the creation of the entry info fields.

The rows in the grid are updated (see Figure 10).

8. Press <*Next*>.

This action displays the *Import curves* wizard page. In most import scenarios, these settings can be left to their default values.

9. Press < *Next* > to accept the default settings.

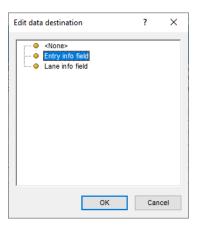


Figure 9: Link to an "Entry info field".

Source type	Source	Destination type	Destination	
File field	Data File Name	Entry information : Entry info field	Data File Name	
File field	Data File Path	Entry information : Entry info field	Data File Path	
File field	Date Created	Entry information : Entry info field	Date Created	
File field	Date Last Modified	Entry information : Entry info field	Date Last Modified	
File field	Version Created	Entry information : Entry info field	Version Created	
File field	Version Last Modified	Entry information : Entry info field	Version Last Modified	
File field	Assay Name	Entry information : Entry info field	Assay Name	
File field	Assay Path	Entry information : Entry info field	Assay Path	
File field	Assay Title	Entry information : Entry info field	Assay Title	
File field	Assay Version	Entry information : Entry info field	Assay Version	
File field	Number of Samples	Entry information : Entry info field	Number of Samples	
File field	Sample Name	Entry information : Entry info field	Sample Name	
File field	Number of Events	Entry information : Entry info field	Number of Events	
Edit destination				
Edit destination				
Preview				

Figure 10: The Import rules dialog box.

The *Import links* dialog box appears, listing the fields from the Agilent 2100 BioAnalyzer csv files that are imported into entry information fields.

- Since none of the fields contain a unique identifier for the imported samples, no fields should be linked to let BIONUMERICS automatically create unique entry keys. Leave all fields unchecked and press < *Finish*>.
- 11. Enter a *Name* (e.g. "Agilent CSV") for the newly created import template and press <*OK*> to save the import template in the database.
- 12. Make sure the *Agilent CSV* import template is highlighted and the *Agilent 2100 Bioanalyzer* experiment is selected in the *Import template Bioanalyzer data* wizard page (see Figure 11). Press <*Next*>.

The last page in the wizard indicates that 13 entries will be created with this import action.

13. Press < *Finish*> to import the csv files into the database.

Specify how to import data into		
Import templates: Agilent CSV	Agilent CSV	Create new Edit Preview Copy
Experiment type: Agilent 2100 Bio	Analyzer V	

Figure 11: The Import template Bioanalyzer data wizard page.

Since this is the first import, the warning message "No reference system found. Please assign reference positions manually." appears (see Figure 12).

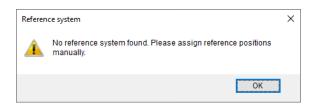


Figure 12: Warning message.

- 14. Press <*OK*> to close the warning message.
- 15. Make sure the Normalization tab is selected in the Fingerprint processing window.
- Show the gel image in normalized view with *Normalization* > *Show normalized view* (¹/₁), Shift+N).
- 17. Click on the band corresponding to the upper marker in one of the lanes, e.g. lane 6, and select *References* > *Add external reference position*.
- 18. In the dialog that appears, enter "7000" as band name and press < OK >.
- 19. Scroll down in the gel image and click on the band corresponding to the lower marker in lane 6.
- 20. Select *References* > *Add external reference position*, enter "150" as band name and press <*OK*>.

This creates the necessary reference system. Since automatic normalization was not possible during the import of this first chip, we need to normalize the gel manually.

- 21. Make sure the **150** label is the active reference position (the **150** label should be highlighted in yellow).
- 22. With the reference position **150** highlighted, **Ctrl+click** on the lower marker band in each profile to assign the band to this reference position.

- 23. Click on **7000** label to make it the active reference position. The **7000** label should now be highlighted in yellow.
- 24. Ctrl+click on the upper marker in each profile to assign the band to this reference position.
- 25. Update the normalization with *Normalization* > *Update normalization* (v, Ctrl+U).

Next, we will assign bands on the fingerprint profiles. This step is not required when only curvebased similarity coefficients will be used to compare profiles.

- 26. Select *File* > *Next step* () to proceed to the next step: the *Bands* tab is now selected.
- 27. Select *Bands* > *Auto search bands* (\mathbb{R}), leave all settings at defaults and press < *Search on all lanes*>.
- 28. Check the band assignments.

If too many band assignments are wrong, repeat the automatic band search with different settings. Minor tweaks to the band assignment can be done manually.

29. Save your work with File > Save (\mathbb{H} , Ctrl+S).

A warning message will appear about the normalized gel resolution. It is safe to update the normalized track resolution to the actual resolution of the gel.

30. Press < *Yes*> in the confirmation message.

31. Close the *Fingerprint processing* window with *File* > *Exit*.

The *Main* window should now look like Figure 13.

The 13 csv files are imported as 13 individual lanes of the *Chip01* fingerprint file. The *Chip01* fingerprint file is displayed in the *Fingerprint files* panel. Each lane is linked to a database entry: the 13 entries are displayed in the *Database entries* panel, and the linked lanes are displayed with green dots in the *Experiment presence* panel.

Simport Agilent BioAnalyzer - BioNumerics				- 🗆 X
File Edit Database Analysis Scripts Window Help				
Experiment types Database entries				Comparisons
<i>ଶ</i> + ୯୦ ⊗ ଲି । ଲି ~ ା ସି + ୯୦ ⊗ ଲି । ଲି	✓ <all entries=""> </all>	ت		+ 13 ⊗ 6, 6
ø Name Type 🕶 Key	Modified date Data File Name	Data File Path Date Created Date Last M	Nodified Version Created 🔻 1	Name Mo 🔫
1 Agient 2100 BioAnalyzer Fingerprint types	2020-03-25 14:54:11 01_DiversiLab Syste	C/Program Files/Agilen Friday, May 11, 2018 1:03:4 Friday, May	11, 2018 C.04.09.TS792 C •	
MPORT_AGILENT_BIOANALYZER0000002	2020-03-25 14:54:11 01_DiversiLab Syste	C:Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May	11, 2018 C.04.09.TS792 C •	
MPORT_AGILENT_BIOANALYZER0000003	2020-03-25 14:54:11 01_DiversiLab Syste	C1Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May	11, 2018 C.04.09.TS792 C •	
MPORT_AGILENT_BIOANALYZER0000004	2020-03-25 14:54:11 01_DiversiLab Syste	C/Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May		
MPORT_AGLENT_BIDANALYZER0000005		C:\Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May		
Entry fields Database design	2020-03-25 14:54:11 01_DiversiLab Syste	C1Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May		
MPORT_AGLENT_BIOANALYZER0000007		C/Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May	11, 2018 C.04.09.TS792 C •	
+ 🗗 ⊗ 🗟 🔁 🖳 ↑ ↓ 🦉 🗆 MPORT_AGLENT_BIOANALYZER0000008		C1Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May		
Name Field type MPORT_AGLENT_BIOANALYZER0000009		C:\Program Files\Aglen Friday, May 11, 2018 1:03:4 Friday, May		Identification projects Decis. NW.
AK Data File Name Fixed A MPORT_AGLENT_BIOANALYZER0000010		C1Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May		2] + [ੈ ⊗ 🗞
MC Data File Path Fixed MPORT_AGLENT_BIOANALYZER0000011		C:\Program Files\Aglen Friday, May 11, 2018 1:03:4 Friday, May		
MPORT_AGLENT_BIOANALYZER0000012		C:\Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May		Name Mc 🔫
Are Date Last Modified Fixed IMPORT_AGILENT_BIOANALYZER0000013	2020-03-25 14:54:11 01_DiversiLab Syste	C1Program Files\Agilen Friday, May 11, 2018 1:03:4 Friday, May	11, 2018 C.04.09.TS792 C •	
Version Created Fixed				
Version Last Modified Fixed				
Assay Name Fixed				
Assay Path Fixed				
Assay Tile Fixed				
Assay Version Fixed				< >
Mc Number of Samples Run Fixed				Alignments BLAST Chrom Comp.
Sample Name Fixed				
Mc Number of Events Fixed				+ 13 ⊗ 6, 6
v				Name Mc 🔫
Fingerprint files Power assembles Annotations				
□ + 予 ⊗ B ₂ 日 ▽ <all fing<="" td=""><td></td><td></td><td></td><td></td></all>				
File name Experiment type Link				
Chip01 Agilent 2100 BioAnalyzer				
v				
c > c			>	< >
Database: import Agilent BioAnalyzer (_DefaultUser_) Entries: Loaded=13, View=13, Selected=0 1 experiments 0	://users/Public/Documents/BioNumerics/Data BN8/Impor	Agilent BioAnalyzer This is a time limited package valid until 2020-12	-30	

Figure 13: The Main window after import.

- 32. Open the lane for one of the entries in the database by clicking on a colored dot in the *Experiment presence* panel (see Figure 14).
- 33. Close the card by clicking in the small triangle-shaped button in the upper left corner.



Figure 14: Gel card.

4.2 Routine import

In our first import round, we have created our import template and defined the reference system for our fingerprint type experiment. Importing Agilent 2100 BioAnalyzer files from other chips is now a very quick and easy process:

- 34. Select *File* > *Import...* (, Ctrl+I) to call the *Import* dialog box again.
- 35. Select *Import BioAnalyzer curves* under *Fingerprint type data* (or under *Recently used*) and press <*Import*>.
- 36. Press the <*Browse*> button and browse for the csv files of the Chip02 folder (see Figure 15).

Import BioAnalyzer da	ta	?	×
Input Select BioAnalyz	er curve files to import.		
Select curve file(s):	 02_DiversiLab System_2018-06-01_10-23-56_Ladder.c 02_DiversiLab System_2018-06-01_10-23-56_Sample1 02_DiversiLab System_2018-06-01_10-23-56_Sample2 02_DiversiLab System_2018-06-01_10-23-56_Sample3 02_DiversiLab System_2018-06-01_10-23-56_Sample4 02_DiversiLab System_2018-06-01_10-23-56_Sample4 02_DiversiLab System_2018-06-01_10-23-56_Sample4 02_DiversiLab System_2018-06-01_10-23-56_Sample6 02_DiversiLab System_2018-06-01_10-23-56_Sample6 02_DiversiLab System_2018-06-01_10-23-56_Sample7 02_DiversiLab System_2018-06-01_10-23-56_Sample8 02_DiversiLab System_2018-06-01_10-23-56_Sample8 02_DiversiLab System_2018-06-01_10-23-56_Sample9 × 13 file(s), less than 1 Mb 	Browse Delete Delete All	
Fingerprint file name:	Chip02		
	< Back Next >	Canc	el

Figure 15: Chip02 curve files.

- 37. Press <*Next*>.
- 38. Make sure the *Agilent CSV* import template is highlighted and the *Agilent 2100 Bioanalyzer* experiment is selected in the *Import template Bioanalyzer data* wizard page (see Figure 11). Press < *Next*>.
- 39. Press < *Finish*> to start the import.

All curves of *Chip02* are grouped into a single fingerprint file and the fingerprint file is automatically normalized based on the upper and lower markers in each profile and a band search is performed.

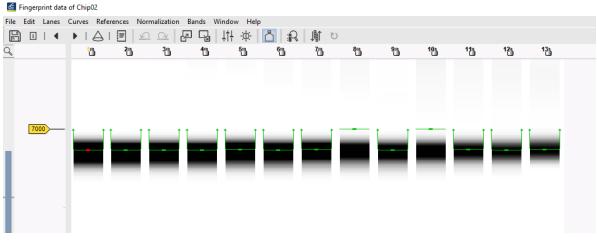
In the curves files of *Chip02*, the plugin is unable to find the upper and lower markers in lane 8 and 10 (see Figure 16).

Several err	ors occurred	?	Х
<u>^</u>	Failed to find start and/or end peak on lane 8.		^
	Failed to find start and/or end peak on lane 10.		
	<	>	~
	ОК		

Figure 16: Error messages for Chip02.

40. Press < OK > to close the error message.

We will first normalize lane 8 and 10 to avoid errors during comparison.


- 41. In the *Fingerprint files* panel of the *Main* window, double-click on *Chip02* to call the *Fingerprint* window.
- 42. Select *File* > *Edit fingerprint data...* (I) to open the fingerprint file in the *Fingerprint processing* window.
- 43. In the bottom of the window, click on the *Normalization* tab or select *File* > *Next step* (▶) twice to show the normalization step.

In lane 8 and lane 10, the upper marker was not identified correctly (see Figure 17).

- 44. Make sure the **7000** label is highlighted in yellow (= active reference position).
- 45. In lane 8, **Ctrl+Click** on the correct position of the upper marker to link that peak to the reference position (see Figure 18).
- 46. In lane 10, **Ctrl+Click** on the correct position of the upper marker to link that peak to the reference position (see Figure 19).

Next, we will check for any issues with the lower marker:

47. Scroll down the gel image and click on reference position **150**, corresponding to the lower marker. The **150** label should now be highlighted in orange (= active reference position).

Figure 17: Example of a normalization issue: the upper marker was not found on lanes 8 and 10.

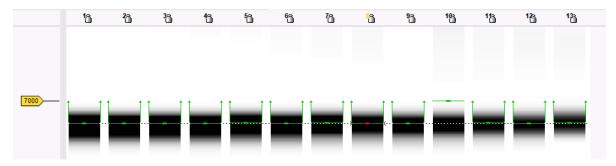


Figure 18: Correction lane 8.

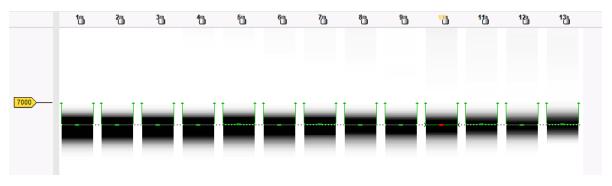


Figure 19: Correction lane 10.

In lane 8 and lane 10, the lower marker was not identified correctly.

- 48. In lane 8, **Ctrl+Click** on the correct position of the low marker to link that peak to the reference position (see Figure 20).
- 49. In lane 10, **Ctrl+Click** on the correct position of the low marker to link that peak to the reference position (see Figure 20).
- 50. Save the edits with *File* > *Save* (B, Ctrl+S) and close the *Fingerprint processing* window.

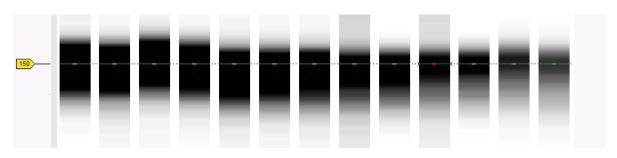


Figure 20: Correction of lower markers.

5 Analyzing BioAnalyzer curve files

- 1. In the Database entries panel of the Main window, select all entries with Ctrl+A.
- Highlight the *Comparisons* panel in the *Main* window and select *Edit* > *Create new object...* (+) to create a new comparison for the selected entries.
- 3. Click on the next to the experiment name **Agilent 2100 Bioanalyzer** in the *Experiments* panel to display the patterns in the *Experiment data* panel (see Figure 21).

In order to correct for the normalization problems associated with having only two markers, the *Import fingerprint tools plugin* can perform an on-the-fly alignment of the densitometric curves present within a comparison. More information about this correction can be found in the *Import fingerprint tools plugin* manual. In this tutorial no details about the correction tool will be discussed.

The correction is calculated on the fly on the densitometric curves loaded in the *Comparison* window, so we first need to show the densitometric curves in the *Experiment data* panel before performing the correction:

- 4. Select *Fingerprints* > *Show densitometric curves* (ﷺ) to display the densitometric curves (see Figure 21).

Figure 21: Show densitometric curves.

Next, a similarity matrix needs to be calculated for the fingerprints. In order to obtain the best results with the alignment algorithm, it is recommended to apply a large optimization value, e.g. 3%.

5. Make sure *Agilent 2100 Bioanalyzer* is selected in the *Experiments* panel and select *Cluster-ing* > *Calculate* > *Cluster analysis (similarity matrix)....*

Make sure a curve-based coefficient is selected, e.g. *Pearson correlation*, specify an optimization of *3%*, press < *Next* > and <*Finish* >.

The similarity matrix (and dendrogram) is calculated for the fingerprints present in the *Comparison* window.

- 7. Select *Fingerprints* > *Auto-correct curves* to perform the auto-correction.
- 8. As a first example, check *Keep edges of fingerprints fixed*. Use 5.0% as *Maximum shift* and enter "5" as *Number of iterations*. Press <*OK*>.

The gel strips display the original traces, whereas the curves are corrected by the auto-correct tool. This viewing mode can be useful to monitor the settings and the results of the alignment algorithm.

- 9. Select *Fingerprints* > *Auto-correct curves* to perform the auto-correction again with different settings.
- 10. Switch off *Keep edges of fingerprints fixed* and specify 1.0% as *Maximum stretch/compression* and press *<OK>*.

The auto-correct function should be used carefully and the result should always be compared with the original traces to verify that the algorithm did not perform excessive shift, stretching or compression on (groups of) patterns. It is recommended to use the function at first with very low values for shift and stretch/compression, and gradually increase these until the results are satisfactory without observing "over-corrected" traces.

11. A clustering can now be calculated on the aligned curves (*Clustering* > *Calculate* > *Cluster analysis (similarity matrix)...*).

If the auto-correct algorithm performed additional correction to the traces that could not be obtained by the *Optimization* function, the clusters will become more homogeneous.

It is important to realize that the alignment is based on the chosen set of entries within the current comparison. By leaving out or adding entries to the comparison, other alignments might be obtained. The alignment is therefore not saved in the database.