

BIONUMERICS Tutorial:

Analyzing an individual sequence in the Sequence Editor

1 Aim

The *Sequence editor* window is a convenient tool implemented in BIONUMERICS to edit and analyze nucleotide and amino acid sequences. The nucleotide sequence of L77616, the Oryza sativa (rice) dihydrodipicolinate synthase gene, will be used in the next paragraphs to illustrate the features of the *Sequence editor* window.

2 Preparing the database

- 1. Create a new database (see tutorial "Creating a new database") or open an existing database.
- 2. In the Main window, select File > Import... (2, Ctrl+I) to open the Import dialog box.
- 3. Choose the option *Download sequences from internet* under the *Sequence type data* item in the tree and click <*Import*>.
- Enter the accession code L77616 in the Accession codes input field and press < Next> (see Figure 1).

The import routine fetches the sequence from the selected database and shows detailed information in the next step.

- 5. Press <*Next*>.
- 6. Make sure the option *Create new* is selected as *Experiment type* and press <*Next*> once more.
- 7. Specify a sequence type name (e.g. **dhdps**) and press < OK > and confirm the action.
- 8. Press <*Finish*>.

The sequence is imported in the database.

3 General features

1. Click on the green colored dot of entry L77616 in the *Experiment presence* panel to open the *Sequence editor* window.

nport sequences				?	>
Download Download sequences from onlin	e repositories.				
Accession code(s):	L77616	^ ~			
Separation character:	,				
Preferred download site:	EBI (EMBL-Bank)	~			
Pick up accession codes from field:		~	Fetch		
Search the other sites for unknow	n accession codes.				
Preview sequences					

Figure 1: Download sequence from EBI.

Create new	?	×
Provide a name for the dhdps	new sequend	e type:
ок	C	ancel

Figure 2: New sequence type.

The upper panel shows the numbered sequence, with bases grouped in blocks of 10. Nontranslated sequence parts are displayed in black lowercase, exons in blue uppercase, and introns in green lowercase.

The middle panel shows a graphical representation of the sequence. The zoom slider allows one to continuously zoom in or out on the graphical sequence view. Zooming can be done up to base level.

The feature information is stored in the Annotation panel (see Figure 3).

If the feature information is not shown, click on the arrow down button in the *Annotation panel* next to the annotation columns and select *Restore default settings*.

2. Click on a particular feature, for example **CDS**.

The selected feature is highlighted with a yellow background in the upper and middle panels and is highlighted in the feature list in the lower panel. The *qualifiers* associated with the selected feature are given in the right panel.

3. Click on the Header tab.

The EMBL description fields are displayed in the Header tab.

Se	quen		ader Annotation										
	\approx	16	5 003	(Ξ [3 ⊗ [2	∛ ▷ ≔	□ ▽1 ▽2 ▽	$> \otimes$					
oriuo	ance l	Editor											
-			gagccacagG	асатса	ACAG GTG	ATATCAC	TAGCCTCAGA	GTAATAACAG	CGGTTAAAAC	CCCTTATCTG	CCGGATGGAA	1980	
	-		TGAAGCATAT										
				GAACAC			GCATACAGTT				GGCAACACAG		
			AACAAGGGAG										
		CCTC					TGTTCTCCCA				TCCAGAGACT		
			ACCACCTCCT										
			TGACAGAGGA								ACTGGAGTCA		
		TAGC		ATTCCC			CCTCATGTAC						
		AATG									TTCAGATTAC		
					AGGG TTG						CAGAAAGAAG		
		TTCT	TGATGATGAT	GATTTT				aataaatagt			tgtcgcggta		
MA			IGAIGAIGAI	GATITI	0101 10A	LLLLLL	SINIIAA Cat		gugugutuag	acgaacatat	tyttytyta	2000	
		Viewer											
\bigcirc	븊	(@) 	1000	' '2000 ' '	3000							1	
	ţ.		'1000	2000	3000							1	
	탶		<	2000	3000								
	ш.			2000	3000							1	
nnota	ation		<					+ @					
nnota	ш.		<	Q] .±.	⊗ <u>I</u>	Length	20%	±. ⊗		1322.19102837)		
nnota	ation ure list		<	Q] +	⊗] End	Length	%GC	/codon_st	join(1207	1322,19102837)		
nnota	ation ure list	1	< Feature key ■ ♦ source	+ Start 1	⊗ <u>]</u> End 3116	3116	37.95	<pre>/codon_s /production</pre>	join(1207 tart=1 act="dihydrodipi	1322,19102837 colinate syntha			
nnota	ation ure list	1 2	< Teature key → source → regulatory	2 ± Start 1 764	⊗ Ţ End 3116 769	3116 6	37.95 0.00	<pre>/codon_st /produ /EC_num</pre>	join(1207 tart=1 act="dihydrodipi per="4.2.1.52"	colinate syntha			
nnota Featu ₹-	ation ure list	1 2 3	Feature key ★ source ★ regulatory ★ regulatory ★ repeat_region	Q) ± Start 1 764 891	⊗ <u>T</u> End 3116 769 1042	3116 6 152	37.95 0.00 27.81	<pre>/codon_st /produ /EC_numl /db_xt</pre>	join(1207 tart=1 act="dihydrodipi ber="4.2.1.52" ref="GOA:Q9LWB9"	colinate syntha			
nnota Featu ₹-	ation ure list	1 2 3 4	Feature key ▲ source ● regulatory ● repeat_region ● repeat_region	Start 1 764 891 891	⊗ <u>1</u> End 3116 769 1042 966	3116 6 152 76	37.95 0.00 27.81 28.00	<pre>/codon_s' /produ /EC_numu /db_x: /db_x:</pre>	join (1207 tart=1 uct="dihydrodipi oer="4.2.1.52" ref="GOA:Q9LWB9" ref="InterPro:IH	colinate syntha			
nnota Featu →- →-	ation ure list	1 2 3 4 5	Feature key ♦ source ♦ regulatory ♦ regulatory ♦ repeat_region ♦ expont	Start 1 764 891 891 1207	⊗ Ţ End 3116 769 1042 966 1322	3116 6 152 76 116	37.95 0.00 27.81 28.00 40.87	<pre>/codon_s' /prodi /EC_numi /db_x: /db_x: /db_x:</pre>	join(1207 tart=1 act="dihydrodipi ber="4.2.1.52" ref="GOA:Q9LWB9"	Colinate syntha R002220" R005263"			
nnota Featu →- →-	ation ure list \checkmark \Leftrightarrow \Leftrightarrow	1 2 3 4 5 6	Feature key Feature key Source regulatory repeat_region repeat_region expeat_region set expeat_region set expeat_region set expeat_region set expeat_region set expeat_region	Start 1 764 891 1207 1207		3116 6 152 76 116 1631	37.95 0.00 27.81 28.00 40.87 42.45	<pre>/codon_s' /produ /EC_numu /db_x: /db_x: /db_x: /db_x: /db_x:</pre>	join(1207 tart=1 uct="dihydrodipi oer="4.2.1.52" ref="GOA:Q9LWB9" ref="InterPro:IF ref="InterPro:IF ref="InterPro:IF ref="InterPro:IF	colinate syntha R002220" R005263" R013785" R020624"			
nnota Featu →- →-	ation ure list \checkmark \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow	1 2 3 4 5 6 7	Feature key Feature key Source regulatory repeat_region repeat_region repeat_region mRNA transit_peptide	Start 1 764 891 1207 1207 1207	End End 3116 769 1042 966 1322 2837 1269	3116 6 152 76 116 1631 63	37.95 0.00 27.81 28.00 40.87 42.45 38.71	<pre>/codon_s' /prod /EC_num /db_x: /db_x: /db_x: /db_x: /db_x: /db_x: /db_x:</pre>	join(1207 tart=1 act="dihydrodipj oer="4.2.1.52" ref="GOA:09LWB9" ref="InterPro:IF ref="InterPro:IF ref="InterPro:IF ref="InterPro:IF ref="UniProtKB/J	colinate syntha R002220" R005263" R013785" R020624"			
nnota Featu →- →-	ation ure list \checkmark \diamondsuit \diamondsuit	1 2 3 4 5 6 7 8	Feature key Feature key Source regulatory regeat_region repeat_region exon mRNA transit_peptide CDS	Start 1 764 891 1207 1207 1207 1207	I T End 3116 769 1042 966 1322 2837 1269 2837	3116 6 152 76 116 1631 63 1631	37.95 0.00 27.81 28.00 40.87 42.45 38.71 42.45	<pre>/codon_s* /produ /Ec_num /db_x: /db_x: /db_x: /db_x: /db_x: /db_x: /db_x: /db_x: /db_x:</pre>	join(1207 tart=1 mct="dihydrodipi per="4.2.1.52" ref="GOA:Q9LWB9" ref="InterPro:II ref="InterPro:II ref="InterPro:II ref="InterPro:II ref="UniProtKB/J tion=[1]	colinate syntha 2002220" 2005263" 2013785" 2020624" rEMBL:Q9LWB9"	se"		
nnota Featu →- →-	ation ure list $\langle \psi \rangle$ $\langle e =$ $\langle \psi \rangle$	1 2 3 4 5 6 7 8 9	Feature key ♦ source ♦ regulatory ♦ regoal region ♦ repeat region ♦ mRNA ♦ mRNA ♦ man_peptide ♦ mat_peptide	Start 1 5 5 5 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	★ I I I End End 5116 769 1042 966 1322 2837 2837 2834	3116 6 152 76 116 1631 63 1631 1565	37.95 0.00 27.81 28.00 40.87 42.45 38.71 42.45 42.65	<pre>/codon_s' /produ /Ec_numi /db_x: /db_x: /db_x: /db_x: /db_x: /db_x: /citai</pre>	join(1207 tart=1 act="dihydrodipj ber="4.2.1.52" ref="GOA:091MB9" ref="InterPro:II ref="InterPro:II ref="InterPro:II ref="InterPro:IKB/I tion=[1] ent="experimente	colinate syntha 2002220" 2005263" 2013785" 2020624" rEMBL:Q9LWB9"		15	
nnota Featu →- →-	ation ure list ♦ ♦ • •	1 2 3 4 5 5 6 7 7 8 9 9 10	Feature key Feature key Source regulatory repeat_region repeat_region repeat_region repeat_region Fransit_peptide CDS mat_peptide intron	Start 1 764 891 1207 1207 1207 1207	I T End 3116 769 1042 966 1322 2837 1269 2837	3116 6 152 76 116 1631 63 1631	37.95 0.00 27.81 28.00 40.87 42.45 38.71 42.45 42.65 35.84	<pre>/codo_si /prod /prod /EC_num /db_xx /db_xx /db_xx /db_xx /db_xx /db_xx /db_xx /ctrain /ctrain</pre>	join(1207 tart=1 dut="dihydrodipj per="4.2.1.52" ref="GOA:09LMB9" ref="InterPro:If ref="InterPro:If ref="InterPro:If ref="UniProtB/J tion=[1] ent="experimenta recorded"	colinate syntha 2002220" 2005263" 2013785" 2020624" rEMBL:Q9LWB9"	se"	18	
Feature	ation ure list ♦ ♦ • •	1 2 3 4 5 6 7 8 9	Feature key ♦ source ♦ regulatory ♦ regoal region ♦ repeat region ♦ mRNA ♦ mRNA ♦ man_peptide ♦ mat_peptide	Start 1 5 5 5 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	⊗ I I End 3116 769 1042 966 1322 2837 1269 2837 2834 1909	3116 6 152 76 116 1631 63 1631 1565	37.95 0.00 27.81 28.00 40.87 42.45 38.71 42.45 42.65 35.84	<pre>/codon_si /prodi /EC_numi /db_x: /db_x: /db_x: /db_x: /db_x: /citai /citai</pre>	join(1207 tart=1 act="dihydrodipj ber="4.2.1.52" ref="GOA:091MB9" ref="InterPro:II ref="InterPro:II ref="InterPro:II ref="InterPro:IKB/I tion=[1] ent="experimente	colinate syntha 2002220" 2005263" 2013785" 2020624" rEMBL:Q9LWB9"	se"	15	

Figure 3: The Sequence editor window: the Annotation panel.

4 Frame analysis

The frame analysis in the *Frame Analysis* panel analyzes a nucleotide sequence in function of its six possible translation frames.

1. Click on the *Frame Analysis* tab to put it into focus.

The frame analysis is performed using settings that can be accessed with **Tools** > **Frame** analysis > Filter settings... (∇) .

2. Select *Tools* > *Frame analysis* > *Show frame analysis in sequence viewer* (()) to map the reading frames on the sequence plot (see Figure 4).

The *Sequence Viewer* panel shows a graphical view of the sequence along with its 6 possible reading frames. The three reading frames of the forward strand are mapped above the sequence plot, while the three reading frames of the reverse strand are mapped below.

3. The zoom slider in the *Sequence Viewer* panel allows zooming from full-length sequence view up to base level view.

In the *Frame Analysis* panel, the frame can be selected from the drop-down list. The ORFs that are found in this frame are listed on the left. ORFs in the direct orientation are indicated with a blue arrow pointing to the right. Red arrows pointing left indicate ORFs in the reverse orientation.

4. Click on an ORF in the left panel.

Additional information about the ORF and the predicted protein is displayed on the right.

	4	
4	4	

															- 0	
Sequence	Heade	r Anno	otation	View	Tools	Wind	ow Help									
1 🖂 I	£	\mathcal{O}	<u>C</u>	χ 2] [3 ⊗	<u>Q</u>]	▷ ⊏	≠∣⊽	71 ▽2 ▽	$\triangleright \otimes$					
equence Edit	ог															
CCTCTCA ATTTGAT CCACCTG AAGTAAC GAAGACC GCAAGAC GCAAGAC AGTGCTAT TTCTGTA	CT T CT T AT G TC A TC C AT A GC T GC C	agcca GAAGC AGCTG ACAAG GTCGA CCACG GACAG AGCAA	ACAGG CATAT GGGAT GGGAG AAGGG CTCCT GAGGA ACCTT	ACA GAT GAA GCT TTG GTG ATA ATT	TCAI TCG(CACI ATT(ATT(ATT(AGCI CCC(ACAG CTGA ATCA CACG FCCC GAGG ATAT GGTC	GTGAT TAAAC TGCTT CAACT ATTTT CGGTT GGAGT TCATG	ATCAC ATGCA ATTGG GAGCA GAGGC TCCTC GGTAA CATAG	TAG GAT GCA GCA GGG TGT TTA TGA CCT	CCTCAGA TGAAGGI TACAGTI ATTCGCI TCTCCCA TACGAAC TGATGAA CATGTAC	ttatgactt GTATAACAG GGTGCTGAAG AACTGCTTTG GTAGGTATGC ATGGGTCCAA ATGGCAGGGG GAGGGGAGA CTGGCTCAGC GAATCCATTG	CGGTTAAAAAC GTGTAATAGT GCACTAAAAT ACGCGGCTCT CCATCATTTA TCAAAGAATG CTAGGTGGAA ATGCAGCGCT	CCCTTATCTG GGGAGGAACA TAAAGTGGTC CCACATCAAT CAATGTGCCA TGTTGGACAT ATATGGTGCC CAATGATAAG AAGACCCGTT	CCGGATGGAA ACAGGAGAGAG GGCAACACAC CCTTACTACA TCCAGAGACT GAGAGGGTTA ACTGGAGTCA CTACTTCCTC	 1980 2070 2160 2250 2340 2430 2520 2610 2700 	
TATGTA	CC T	CTCCC	CCTT	GAA	AAG	AGGG	TTGAG	TTCGT	CCG	AATTGTO	GAATCCATTG	GACGGGAAAA	TTTTGTGGGT	CAGAAAGAAG	2790	
auence Viev	NOT															
	1			'20	00 · · · · E	, ∵'3000 ⊐)	-	-							
. т.							3									
Frames	<)									
Frames	<										Posit	ion: 1826-2837				
Frames	<							Init 6 4 24	tiations	•		ion: LLKLKYLIFM GRFDLEAYDS FGTKIKVVGN SHFEAVLPMG VKCYADRGIS ENAALNDKLL	TLIPISWSALIFLFLS LINMQIEGGAEGVIVO TGSNSTRAIHATEQO TIIYNPSRDWODI WSGNDDECHESRWKT PLMKWLFCQENPIALN IGRNFYGOKEARVLI	GTTGEGHLMSWDEH: FAVGMHAALHINPY PPVIEAVSSYTNMA GATGVISVASNLIP ITALAQLGVARPVFRJ	IMLIGHTVN (GKTSVEGL GVKECVGHEI GLMHSLMYE(2
Frames ame Analysi Frame 2 Start \$466 1566	<		Stop			Lengti 189		6 4	tiations	•	Translat ORF len	ion: LLKLKYLIFM GRFDLEAYDS: FGTKIKVVGN SHFEAVLPMG VKCYADRGIS: ENAALNDKLL! RVEFVRIVES: gth: 1011	LINMQIEGGAEGVIVG TGSNSTREAIHATEQG PTIIYNVPSRDWQDIE IWSGNDDECHESRWKY PLMKWLFCQPNPIALN	GTTGEGHLMSWDEH: FAVGMHAALHINPY PPVIEAVSSYTNMA GATGVISVASNLIP ITALAQLGVARPVFRJ	IMLIGHTVN (GKTSVEGL) GVKECVGHEI GLMHSLMYE(2
Frames Frame 2 Start 846 1566	<		Stop			Lengti 189		6 4	tiations	•	Translat	ion: LLKLKYLIFM GRFDLEAYDS FGTKIKVVGN: SHFEAVLPMG VKCYADRGIS ENNALNDKLL RVEFVRIVES: gth: 1011 gth: 337	LINMQIEGGAEGVIVG TGSNSTREAIHATEQG PTIIYNVPSRDWQDIE IWSGNDDECHESRWKY PLMKWLFCQPNPIALN	GTTGEGHLMSWDEH: FAVGMHAALHINPY PPVIEAVSSYTNMA GATGVISVASNLIP ITALAQLGVARPVFRJ	IMLIGHTVN (GKTSVEGL) GVKECVGHEI GLMHSLMYE(2

Figure 4: The Frame Analysis panel.

5 Restriction enzyme analysis

Using the restriction enzyme analysis tool, in silico digests of nucleic acids can be generated for a selected restriction enzyme or a combination of restriction enzymes. The resulting fragments can then be rendered as a virtual gel image.

- 1. Click on the *Restriction Analysis* tab in the lower panel.
- 2. Select Tools > Restriction analysis > Add enzyme map... (Q).
- 3. Select *Select single enzyme from list*, select *Pstl* and press < *OK* >.
- Double-click on the enzyme in the *Restriction Analysis* panel or select *Tools* > *Restriction analysis* > *Add selected enzyme to fragment list* (*) to map the restriction enzyme onto the sequence (see Figure 5).
- 5. Select **Tools** > **Restriction analysis** > **Add enzyme map...** (\square) again.
- 6. Select *Select single enzyme from list*, select *SpmI*, make sure *Replace list* is unchecked and press <*OK*>.
- 7. Double-click on the enzyme in the *Restriction Analysis* panel or select **Tools** > **Restriction analysis** > **Add selected enzyme to fragment list** (1/2+) to map the restriction enzyme onto the sequence.

The fragments from both enzymes are now displayed in the right panel (see Figure 5).

8. Click on a fragment in the fragment list (right panel).

SEQUENCE_EDITOR0000001 (Sequence Viewer)				- 0	×
Sequence Header Annotation View Tools Window Help					
] ⊠ ฿ ב פ % צ צ צ פ א פן ⊳ וייין סז סז סא ⊗)				
equence Editor					
GAAGACCTC CGTCGAAGGG TTGATCTCCC ATTTTGAGGC TGTTCTCCCA ATG					^
GCAAGACAT ACCACCTCCT GTGATTGAGG CGGTTTCCTC TTATACGAAC ATG					
GTGCTATGC TGACAGAGGA ATAAGCATAT GGAGTGGTAA TGATGATGAA TGC					
TTCTGTAGC CAGCAACCTT ATTCCCGGTC TCATGCATAG CCTCATGTAC GAA					
		TGGC AAGACC			
TTATGTACC TCTCCCCCTT GAAAAGAGGG TTGAGTTCGT CCGAATTGTC GAA					
AAGGGTTCT TGATGATGAT GATTTTGTGT TGATCAGTAG GTATTAAtat aat qataatctq ccqtatqqct tttaqacatt tcattacatq atqcqcqatt qqt					
tacatcatc tteettqtte qtgaatgtta tteeetqtqq etatateetq acc		-	-	-	- 17
gagttgcgc ttcattctgt tttctcctct tcttccttgt ccgccgagtt gct	-	ceas sauase	eegg boobgat		
, , , ,,	5				
equence Viewer					
	_			1	
1000 2000 3000					
{Pst}{Spm}					
<					3
estriction Analysis					
(Pst)(Spm) 이 자 자 파 사 태 급		<u>ل</u> ا م			
	✓ Cut1	Fragment	Cut2	Length	
ti 1	0/0	end-Pstl	703/699	703 bp	
omi 1	703/699	Pstl-Spml	2950/2952	2247 bp	
	2950/2952	Spml-end	3116/3116	166 bp	
	2000.2002		011010110	100.00	
		<			>
notation Header Custom Fields Sequence Search Contigs Frame Analysis Restriction Analysis					,

Figure 5: The Restriction Analysis panel.

The fragment is highlighted in purple on the map image. Non-selected fragments are shown in green.

A virtual gel can be created as follows:

9. Highlight "Pstl" and select *Tools* > *Restriction analysis* > *Add selected enzyme to gel window* (E).

Hover with the mouse over a band to see its molecular size.

- 10. Highlight "Spml" and select *Tools* > *Restriction analysis* > *Add selected enzyme to gel window* (
) to add it as a lane to the virtual gel.
- 11. Select one of the fragments in the right panel and select *Tools* > *Restriction analysis* > *Add fragments to gel window* (
) to add the fragments to the virtual gel.
- 12. Select *Edit* > *Add marker* to display a molecular weight marker pattern on the gel (see Figure 6 for an example).
- 13. If desired, the position of a gel pattern can be changed with *Edit* > *Move to the left* (Ctrl+LEFT) or *Edit* > *Move to the right* (Ctrl+RIGHT).
- 14. Remove all fragments from the list with *Tools* > *Restriction analysis* > *Clear fragment list.* (\downarrow).
- 15. Remove all enzymes from the map with *Tools* > *Restriction analysis* > *Clear map list* (**1**/2).

Restriction enzymes can also be selected by using more general criteria.

16. Select **Tools** > **Restriction analysis** > **Add enzyme map...** (Q).

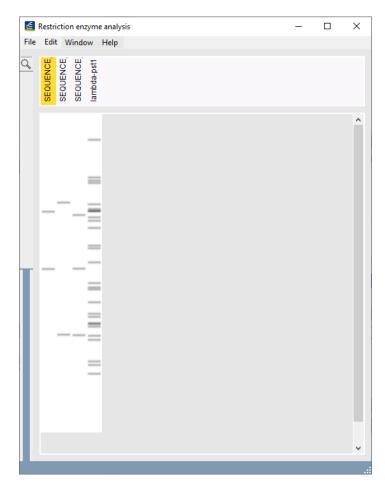


Figure 6: Gel window.

- 17. Check *User filter settings* and click on *<Change filter settings*>.
- 18. Under *Recognition pattern and cleavage type*, uncheck *Blunt end* and *3' protruding end* and leave all other options checked.
- 19. Under *Length recognition site*, check *n=4* and uncheck all other options.
- 20. Uncheck *Include restriction enzymes not commercially available* and make sure all other options are checked under *Restriction enzymes* and *Methylation*.
- 21. Finally, set *Minimal cuts* to "1" and *Maximal cuts* to "4". Check *Replace list* and press <*OK*> twice to apply the settings.

The enzymes that fulfill the specified criteria are shown in the left panel.

22. Map an enzyme onto the sequence with Tools > Restriction analysis > Add selected enzyme to fragment list (*).

6 Primer design

The primer analysis application in BIONUMERICS has been designed to calculate optimal primers and primer combinations for the amplification of a target region in function of various experimental parameters. When launching the primer analysis tool from the *Sequence editor* window, the target

region can be adapted from the complete sequence, or from a (feature) selection.

- 1. In the *Annotation* panel of **L77616**, click on the CDS feature to select the corresponding sequence.
- 2. Select *Tools* > *Primer design...* to display the *Primer design* window.

The *Primer design* window is divided into an upper panel displaying the nucleotide sequence (the *Sequence viewer panel*), and a lower panel, giving information concerning the primers and primer combinations found (initially empty).

3. Use the zoom slider to zoom in on the sequence.

Zooming can be done up to base level. The translation of the CDS features – if present – is shown underneath the nucleotide sequence. The red vertical line indicates the cursor position on the sequence.

Before primers and primer combinations can be searched for, a target region needs to be defined on the plot:

4. Select *Target* > *Edit...*.

A dialog box appears, asking for some specifications about the target region. In this example we will locate the primer regions up- and downstream of the selected CDS.

 Make sure Selected feature is checked, press < Extended selection > and extend the selected CDS region with 300 bases upstream and 300 bases downstream. Check Exclude selection as priming target and press < OK > twice.

The target design is plotted on the sequence (see Figure 7).

- 6. Select *File* > *Run calculation* (\downarrow) to display the Primer and PCR settings.
- 7. Leave the settings at their default values and press < OK >.

The left and right panels in the *Primers* tab list the most suitable forward and reverse primers respectively (see Figure 7).

The primer sequence is displayed in the *Primer* column. The length of the primer is shown in the *Len* column and the start position in the *Pos* column. The melting temperature (calculated according to the nearest-neighbor thermodynamics published by SantaLucia using the default thermodynamic settings), the number of different bases, the degeneracies, and GC-content are displayed in the *Tm*, *Difference*, *Degeneracy*, and *GC-content* columns respectively.

The primers are ordered according to a score, which is calculated from the primer calculation parameters (*Score* column). The primers can also be sorted according to the other features, such as position, length, degeneracy, melting temperature, and number of different bases (in case discriminating primers were searched for). Arranging the primer list according to another feature (for example base difference) can help select suitable primers out of the full list.

- 8. To sort the list according to another feature, right-click with the mouse pointer on a header field and select *Sort*.
- 9. Select a primer from the forward or reverse primer list.

The sequence of the selected primer is highlighted with a yellow background in the *Sequence viewer panel*. A red line is shown in the sequence position bar when a forward primer is selected, a reverse primer is recognized by a blue line.

10. Information of forward or reverse primers can be copied to the clipboard with *Primers* > *Forward* > *Export to clipboard* () or *Primers* > *Reverse* > *Export to clipboard* (), respectively. From the clipboard, this information can be pasted in other applications.

Prim	ners														-		
Tar	raet Prim	ners PCI	R Window Help														
	-																
	2																
	nce viewe	er.															
	lice viewe																
				2211111 1 1													
	200	400	600 800 10	00 12	00	1400	1600		1800	2000	220	0 2400 2600 26	300 3	000 -			
																	2
mer	rs																
									-	្តា							
}	2	Poe	Primer	Len	Tm	Dif	Degen	_	Count	Type	Doe	Primer	Len	Tm	Dif	Degen	
}	5 Туре	Pos	Primer	Len	Tm	Dif	Degen	•	Count	Туре	Pos	Primer	Len	Tm	Dif	Degen	
}	Type forward	1151	aggagtgacctcgggtttttgc	22	64.5	0	1.000000	•	Count	Type reverse	3094	gagcaactoggoggacaagga	21	67.5	0	1.000000	D
}	Type forward forward	1151 1152	aggagtgacctcgggtttttgc ggagtgacctcgggtttttgct	22 22	64.5 64.5	0	1.000000		Count 1 2	Type reverse reverse	3094 3096	gagcaactcggcggacaagga cgagcaactcggcggacaag	21 20	67.5 67.4	0	1.000000))
}	Type forward forward forward	1151 1152 1154	aggagtgacctcgggtttttgc ggagtgacctcgggtttttgct agtgacctcgggtttttgcta	22 22 22	64.5 64.5 63.8	0 0 0	1.000000 1.000000 1.000000		Count 1 2 3	Type reverse reverse reverse	3094 3096 3092	gagcaactcggcggacaagga cgagcaactcggcggacaag agcaactcggcggacaag	21 20 22	67.5 67.4 66.7	0 0 0	1.000000 1.000000 1.000000)))
}	Type forward forward forward forward	1151 1152 1154 1153	aggagtgacctcgggtttttgc ggagtgacctcgggtttttgct agtgacctcgggtttttgctca gagtgacctcgggtttttgctc	22 22 22 22 22	64.5 64.5 63.8 63.1	0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000		Count 1 2 3 4	Type reverse reverse reverse reverse	3094 3096 3092 3091	gagcaactoggoggacaagga ogagcaactoggoggacaag agcaactoggoggacaaggaag gcaactoggoggacaaggaaga	21 20 22 22	67.5 67.4 66.7 66.7	0 0 0 0	1.000000 1.000000 1.000000 1.000000	0 0 0
}	Type forward forward forward forward forward	1151 1152 1154 1153 1155	aggagtgacctcgggtttttgc aglgactcgggtttttgct aglgacctcgggttttgcta gagtgacctcgggtttttgctc gtgacctcgggtttttgctca	22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8	0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000		Count 1 2 3 4 5	Type reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093	gagcaactoggoggacaagga cyagcaactoggoggacaag agcaactoggoggacaag gcaactoggoggacaaggaag gagcaactoggoggacaaggaag	21 20 22 22 22 22	67.5 67.4 66.7 66.7 66.7	0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000))))
}	Type forward forward forward forward forward forward	1151 1152 1154 1153 1155 1066	aggagtgacctogggtttttgo ggagtgacctogggttttgot agtgacctogggttttgota gagtgacctogggttttgotca gtgacctogggttttgotca coccaagatacattgocagoca	22 22 22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8 62.6	0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000		Count 1 2 3 4 5 6	Type reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093 3086	gagcaactoggoggacaagga ogagcaactoggoggacaag agcaactoggoggacaaggaag gcaactoggoggacaaggaag gagcaactoggoggacaaggaa atoggoggacaaggaagaagagg	21 20 22 22 22 22 22 22	67.5 67.4 66.7 66.7 66.7 65.7	0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	0 0 0 0
}	Type forward forward forward forward forward forward forward	1151 1152 1154 1153 1155 1066 1169	aggagtgactcgggttttigc ggagtgacctcgggttttigct agtgacctcgggttttigcta gagtgacctcgggttttigcta gtgacctcgggttttigcta ccccaaggatacattgccagcca ttgctcattcatcctcccca	22 22 22 22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8 62.6 62.6	0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000		Count 1 2 3 4 5 6 7	Type reverse reverse reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093 3086 3085	9agcaactoggoggacaagga cgagcaactoggoggacaag agcaactoggoggacaag ggacaactoggoggacaaggaag gagcaactoggoggacaaggaag gagcaactoggoggacaaggaag gagcaactoggoggacaaggaag cggoggacaaggaagaagagga	21 20 22 22 22 22 22 22 22	67.5 67.4 66.7 66.7 66.7 65.7 65.7	0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	
}	Type forward forward forward forward forward forward forward forward	1151 1152 1154 1153 1155 1066 1169 1170	aggagtgactcgggttttigc ggagtgactcgggttttigct agtgactcgggttttigct ggagtgactcgggttttigct gtgactcgggttttigctcat ccacaaggtacattgccagcca ttgctcattcatccctcca tgctcattcatcctccca	22 22 22 22 22 22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8 62.6 62.6 62.4	0 0 0 0 0 0 0 0 0	1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000		Count 1 2 3 4 5 6 7 8	Type reverse reverse reverse reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093 3086 3085 3088	992caactogocgaacaagga cgagcaactogocgacaag agcaactogocgacaag ggcaactogocgacaaggaag gagcaactogocgacaaggaa gagcaactogocgacaaggaa togocggacaaggaagaagagga ccgocgacaaggaagaagagga actogocggacaaggaagaaga	21 20 22 22 22 22 22 22 22 22 22	67.5 67.4 66.7 66.7 65.7 65.7 65.1	0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	
mer 3-	Type forward forward forward forward forward forward forward forward	1151 1152 1154 1153 1155 1066 1169 1170 1065	aggagtgactcgggttttigc ggagtgactcgggttttigct agtgactcgggttttigct ggagtgactcgggttttigctca ggagtgactcgggttttigctca ccacaagatacattgccagcca ttgctattcatcctcccca tgctattcatcctccccca tccacaagatacattgccagcc	22 22 22 22 22 22 22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8 62.6 62.6 62.4 62.4	0 0 0 0 0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000		Count 1 2 3 4 5 6 7 8 9	Type reverse reverse reverse reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093 3086 3085 3088 3088	99caactoggogacaagga cgagcaactoggogacaag agcaactoggogacaaggaag gcaactoggogacaaggaag ggcaactoggogacaaggaa toggoggacaaggaagaag cggoggacaaggaagaagag catoggoggacaaggaagaaga catoggoggacaaggaagaaga caactoggoggacaaggaagaa	21 20 22 22 22 22 22 22 22 22 22 22 22	67.5 67.4 66.7 66.7 65.7 65.7 65.7 65.1 64.5	0 0 0 0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	
}	Type forward forward forward forward forward forward forward forward forward forward	1151 1152 1154 1153 1155 1066 1169 1170 1065 1144	aggagtgactcgggttttigc ggagtgacctgggttttigct agtgacctgggttttigcta gagtgacctgggttttigctc ggagtgacgggtttigctca ccacaagatacattgccagcca tigctcattcatcctccctca tgctcattcatcctcctca tgctcattgatacattgccagcc cgtttaaggagtgacctggg	22 22 22 22 22 22 22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8 62.6 62.6 62.4 62.4 62.4	0 0 0 0 0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000		Count 1 2 3 4 5 6 7 8 9 9 10	Type reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093 3086 3085 3088 3090 3087	gagcaactoggoggacaagga cgagcaactoggoggacaaggaag gacaactoggoggacaaggaag gcaactoggogacaaggaag gacaactoggogacaaggaag gacaactoggogacaaggaaga cgocggacaaggaaga cgocggacaaggaaga cgocggacaaggaaga ccogocggacaaggaaga actogocggacaaggaagaa ccogocggacaaggaagaa ctoggoggacaggaagaagaa	21 20 22 22 22 22 22 22 22 22 22 22 22 22	67.5 67.4 66.7 66.7 65.7 65.7 65.7 65.1 64.5 64.3	0 0 0 0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	
}	Type forward forward forward forward forward forward forward forward forward forward forward	1151 1152 1154 1153 1155 1066 1169 1170 1065 1144 1156	aggagtgactcgggttttigc ggagtgactcgggttttigct agtgactcgggttttigcta ggagtgactcgggttttigcta gtgactcgggttttigctat ccacaagatacttgccagcca tigctattactccctccat tgctcattactccctccat tccacaagatacttgccagcc cgtttaaggagtgactcggg tgacctgggttttigctatt	22 22 22 22 22 22 22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8 62.6 62.6 62.4 62.4 62.4 62.3 62.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000		Count 1 2 3 4 5 6 7 8 9 10 11	Type reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093 3086 3085 3088 3090 3087 3089	ggcaactcggcggacaagga cgagcaactcggcggacaag agcaactcggcggacaag gagcaactcggcggacaaggaa gagcaactcggcggacaaggaa tcggcggacaaggaagaagag actcggcggacaaggaagaagga actcggcggacaaggaagaaga ccaactcggcggacaaggaagaaga actcggcggacaaggaagaaga aactcggcggacaaggaagaaga aactcggcggacaaggaagaaga aactcggcggacaaggaagaaga	21 20 22 22 22 22 22 22 22 22 22 22 22 22	67.5 67.4 66.7 66.7 65.7 65.7 65.1 64.5 64.3 64.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	
}	Type forward forward forward forward forward forward forward forward forward forward forward forward	1151 1152 1154 1153 1155 1066 1169 1170 1065 1144 1156 1158	aggagtgactcgggttttigc ggagtgactcgggttttigct agtgactcgggttttigct ggagtgactcgggttttigct ggagtgactcgggttttigct gtgactcgggttttigctcat ccacaagatacatigccagcca ttgctattcatcctcctccat tccacaagatacatigccagcc cgtttaaggagtgactggg tgactcgggttttigctcatt acccgggttttigctcattca	22 22 22 22 22 22 22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8 62.6 62.6 62.4 62.4 62.3 62.2 62.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	^	Count 1 2 3 4 5 6 7 8 9 10 11 12	Type reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093 3086 3085 3088 3080 3087 3089 3084	gagcaactcggcggacaaga cgagcaactcggcggacaag gagcaactcggcggacaaga gcaactcggcggacaagaaga gagcaactcggcggacaagaaga gagcaactcggcggacaagaaga gagcaactcggcggacaagaagaga cgagcgacaggaagaaga cggcggacaaggaagaagaaga cdcggcggacaaggaagaagaagaa cactcggcggacaaggaagaaga caactcggcggacaaggaagaaga caactcggcggacaaggaagaaga caactcggcggacaaggaagaaga gaccaacgaagaagaaga gaccaacgaagaagaaga gaccaaggaagaagaga gaccaaggaagaagaga caactggcggacaaggaagaaga gaccaaggaagaagaga caactggcggacaaggaagaaga caactggcggacaaggaagaagaga caactggcggacaaggaagaagaga	21 20 22 22 22 22 22 22 22 22 22 22 22 22	67.5 67.4 66.7 66.7 65.7 65.7 65.7 65.1 64.5 64.3 64.2 64.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	
-	Type forward forward forward forward forward forward forward forward forward forward forward	1151 1152 1154 1153 1155 1066 1169 1170 1065 1144 1156	aggagtgactcgggttttigc ggagtgactcgggttttigct agtgactcgggttttigcta ggagtgactcgggttttigcta gtgactcgggttttigctat ccacaagatacttgccagcca tigctattactccctccat tgctcattactccctccat tccacaagatacttgccagcc cgtttaaggagtgactcggg tgacctgggttttigctatt	22 22 22 22 22 22 22 22 22 22 22 22 22	64.5 64.5 63.8 63.1 62.8 62.6 62.6 62.4 62.4 62.4 62.3 62.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000	~	Count 1 2 3 4 5 6 7 8 9 10 11	Type reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse reverse	3094 3096 3092 3091 3093 3086 3085 3088 3090 3087 3089	ggcaactcggcggacaagga cgagcaactcggcggacaag agcaactcggcggacaag gagcaactcggcggacaaggaa gagcaactcggcggacaaggaa tcggcggacaaggaagaagag actcggcggacaaggaagaagga actcggcggacaaggaagaaga ccaactcggcggacaaggaagaaga actcggcggacaaggaagaaga aactcggcggacaaggaagaaga aactcggcggacaaggaagaaga aactcggcggacaaggaagaaga	21 20 22 22 22 22 22 22 22 22 22 22 22 22	67.5 67.4 66.7 66.7 65.7 65.7 65.1 64.5 64.3 64.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	

Figure 7: The Primers tab.

11. Alternatively, add the information of forward or reverse primers to the printing list with *Primers* > *Forward* > *Add to printing list* (➡) or *Primers* > *Reverse* > *Add to printing list* (➡). This list is displayed in the *Printing panel* and can be sent to a printer from there.

The *PCR panel* lists the obtained PCR products, ordered based on their scores. Their primer information can also be exported to the clipboard or added to the printing list.

The *Plots panel* shows on the left-hand side the degeneracy and melting temperature over the length of the sequence. On the right, the degeneracy of each possible primer (X-axis) is plotted against its melting temperature (Y-axis). If a primers falls within the settings specified, it is plotted purple, if not it is plotted gray.

7 Blast analysis

When looking at detailed sequence information in the *Sequence editor* window, one may want to start a BLAST search on the complete sequence or on a selected subsequence.

- 1. In the *Annotation* panel of **L77616**, click on the CDS feature to select the corresponding sequence.
- 2. With the subsequence selected, select *Tools* > *BLAST analysis...*.

This action will launch the *BLAST search settings* dialog box (see Figure 8).

Before the BLAST analysis is launched, the BLAST program and BLAST screening database need to be defined in the *BLAST search settings* dialog box.

3. In this example, make sure *blastn* is selected (or *blastx*), leave the other settings unaltered and press <*OK*>.

A BLAST analysis is launched for the selected subsequence and the *BLAST* window is displayed. The analysis might take a couple of minutes, depending on the length of the selected sequence,

megablast blastn blastx tblastx	Search nucleotide databases using a nucleotide query, for searches where lower similarity is expected	
	ts	
 BioNumerics data Blast Internet data 	abases	
 BioNumerics data Blast Internet data 	abases	^
Blast Internet dat ielect BLAST databas	abases abases ie(s)	
 BioNumerics data Blast Internet dat ielect BLAST databas Database 	abases abases be(s) Description	
 BioNumerics data Blast Internet dat ielect BLAST databas Database nr 	abases abases e(s) Description All GenBank + RefSeq Nucleotides + EMBL + DDBJ + PDB sequences (e:	
 BioNumerics data Blast Internet data elect BLAST databass Database nr refseq_rna 	abases abases e(s) Description All GenBank + RefSeq Nucleotides + EMBL + DDBJ + PDB sequences (e: RNA entries from NCBI's Reference Sequence project	

Figure 8: The BLAST search settings dialog box.

the BLAST program and BLAST screening database.

SEQUENCE_EDITOR0000001 dhdps (Blast analysis)		- 🗆	×
File Hit Graph Tools Window Help			
BLAST Report	Iteration View		
	Entry Experiment Length #Hits Entropy Kappa Lambda		•
- Blast screening:	SEQUENCE_EDITOR dhdps 1631 250 0.780000 0.410000 0.625000		^
Program: blastn			
- Database screening:			~
Name: "nr"			_
Location: URL BLAST	Hit View Hit Length ≢Hsps Identify (b., Similarity., E-value Sum of al., I		-
Type: nucleic acids	Hit Length #Hsps Identity (c Similarity E-value Sum of al Oryza sativa dihydrodipicolinate synthase gene, complete cds 3116 1 100.00 100.00 0.00000e 1631	-	•
 Program settings: 	Oryza salura banjusči organijase gene, cumpete cas Oryza salura banjusči organijase gene, cumpete cas Oryza salura banjušči organijase da salura i postava postava salura postava postava Do postava post Do postava postava postava postava postava postava postava postava postava p		
Expectation value: 10 Word size: 11	Oryza sativa genomic DNA, chromosome 4, BAC clone: OSJNBa0019K04, complete sequence 154865 2 98.23 98.23 0.000000e 1983		
Match reward: 2	Orvza sativa lodica Group cultivar Shuhui498 chromosome 4 sequence 35849732 4 97 86 97 86 0 000000e 3685		~
Mismatch penalty: -3	Hsp View		
Open gap cost: 5	Match Start query Stop query Start hit Stop hit Identity Similarity Bitscore Score E-value Identical p Positive p Aligner		•
Extend gap cost: 2 Gapped alignment: Yes	1 1631 1207 2837 100.00 100.00 2942.580000 3262 0.00000e 1631 1631	1631	^
Number of hits accepted: 250			
			~
BLAST Output			-
6			
Query: emb SEQUENCE_EDITOR0000001 dhdps Subject: Oryza sativa dihydrodipicolinate synthase gene, complete			Â
Identities: 1631/1631 (100.00%), Positives: 1631/1631 (100.00%), (aps: 0/1631 (0.00%)		
	COSCCATCTCCCTGGATGATTATCTTCCAATGCGAAGTAGTGAAAGTGGAAAAATCGGTAATCTTCTTATTTCGGAAGGAA		
	CRECCATC COCCERCA TEAT TATUE TO COA A FEAGUART ANT CANADA TO OCTA TO TO TATUE TO COA A TATUE TO TATUE TO TATUE TO COA TO COA A TATUE AND A TO COA A TATUE TO TATUE TO TATUE TO COA A TATUE AND A TO COA A TATUE TO COA A TATUE AND A TATUE AND A TATUE TO COA A TATUE AND A TA		
	TTTRACTATCAGGTCTTGAAATCATTTATTGCTCCTTCTGAATTTRACAGTAACATCGCAGCACTAAGTTGCTTCATACCATGTACCAAATTGCTCTTGCTTATAGCCATATTGTGTGTG		
	TTTRCTATCAGGTCTTGAAATCATTTATTGCTCCTTCTGAATTTACACAGTAACATCGCAGCACTAAGTTGCTTCATACCATGTACCCAAATTGCTCTTATAGCCATATTTGTGTGTG		~
BLAST Output Graphic Output			

Once the BLAST analysis has completed, the results are displayed in the BLAST window:

- The *BLAST Report* panel provides an overview of the BLAST screening settings i.e. the program that was used to perform the search and the related program settings, and also the database that was used for screening.
- Information about the blasted (sub)sequence is given in the *Iteration View* panel, with information about the returned hits.
- In the *Hit View* panel, the different BLAST hits are listed by decreasing identity values. For each hit, the header definition of the sequence is displayed in the Hit column, followed by

the length of the full hit sequence, the number of High-scoring segment pairs (HSPs) per hit, and the identity and similarity value of the HSP with the highest alignment score in a given search.

- Detailed Hsp information about the selected hit is displayed in the Hsp View panel.
- For the selected Hsp, the *BLAST Output* panel displays the alignment, preceded by the sequence identifier, the full subject definition line, and the number of identical residues in this alignment (Identities), the number of conservative substitutions (Positives), and if applicable, the number of gaps in the alignment. Beneath that, the actual alignment is shown, with the query on top, and the database match below.
 - 4. (Optionally) save the BLAST analysis with *File* > *Save...* (B). This opens the *Save BLAST object* dialog.
 - 5. Specify a BLAST object name and press < OK > (see Figure 10).

Save BLAST object	?	×
My Blast Analysis		
Save as local copy		
Save as connected database object		
ОК	Car	icel

Figure 10: Save the BLAST project.

- 6. Close the *BLAST* window and *Sequence editor* window.
- 7. Click on the tab of the BLAST projects panel in the Main window.

The saved BLAST project is listed (see Figure 11) and can be consulted again by double-clicking the BLAST project name.

Alignments BLAST projects	Chromosome comparisons
+ 🖻 🛛 🗟	All BLAST projects>
Name	Modified date
My Blast Analysis	2020-04-21 14:04:26

Figure 11: Saved BLAST project.

The BLAST functionality is also accessible from other windows in BIONUMERICS: *Main* window, *Sequence alignment* window, *Chromosome Comparison* window, and *Annotation* window. Please check the other tutorials on our website and the reference manual for detailed information.