

BIONUMERICS Tutorial:

wgSNP with mapping performed on the cloud calculation engine

1 Introduction

A Single Nucleotide Polymorphism (SNP) is a variation in a single nucleotide, which occurs at a specific position of the genome. When performed on whole genome sequences (WGS), this analysis is referred as **whole genome SNP (wgSNP) analysis**. When performed in BIONUMERICS a typical workflow for wgSNP analysis consists of following steps:

- 1. Choose a reference sequence
- 2. Map sequence reads against the reference sequence (locally or on the cloud calculation engine)
- 3. Perform wgSNP analysis and filter out relevant SNPs
- 4. wgSNP clustering

In this tutorial we will focus on the first two steps of the workflow, with mapping of the reads performed on the cloud calculation engine. The last two steps are covered in the tutorial "wgSNP: analysis and clustering".

2 Preparing the database

Whole genome SNP analysis with mapping performed on the cloud calculation engine can only be performed after installation of the *WGS tools plugin* in the BIONUMERICS database (*File* > *Install / remove plugins...* (\square)).

During installation of the plugin, make sure to select the options **Use default Cloud Calculation Engine** and **Enable running jobs on Cloud Calculation Engine** to unlock the full potential of the default cloud calculation Engine. Note that this installation procedure requires a password and a project name, linked to a certain amount of credits. Please contact Applied Maths to obtain more information.

The **WGS demo database** for *Staphylococcus aureus* already contains the installed *WGS tools plugin* (but without any credits). This demo database can be downloaded directly from the *BION-UMERICS Startup* window (see 2.1), or restored from the back-up file available on our website (see 2.2).

2.1 Option 1: Download demo database from the Startup Screen

1. To download the database directly from the *BIONUMERICS Startup* window, click the button, located in the toolbar in the *BIONUMERICS Startup* window.

This calls the *Tutorial databases* window (see Figure 1).

Figure 1: The *Tutorial databases* window, used to download the demonstration database.

- 2. Select the WGS_demo_database_for_Staphylococcus_aureus from the list and select Database > Download ().
- 3. Confirm the installation of the database and press < *OK* > after successful installation of the database.
- 4. Close the *Tutorial databases* window with *File* > *Exit*.

The **WGS_demo_database_for_Staphylococcus_aureus** appears in the *BIONUMERICS Startup* window.

5. Double-click the **WGS_demo_database_for_Staphylococcus_aureus** in the *BIONUMERICS Startup* window to open the database.

2.2 Option 2: Restore demo database from back-up file

A BIONUMERICS back-up file of the whole genome demo database for Staphylococcus aureus is also available on our website. This backup can be restored to a functional database in BIONU-MERICS.

6. Download the file wgMLST_SAUR.bnbk file from https://www.applied-maths.com/download/ sample-data, under 'WGS_demo_database_for_Staphylococcus_aureus'.

In contrast to other browsers, some versions of Internet Explorer rename the wgMLST_SAUR.bnbk database backup file into wgMLST_SAUR.zip. If this happens, you should manually remove the .zip file extension and replace with .bnbk. A warning will appear ("If you change a file name extension, the file might become unusable."), but you can safely confirm this action. Keep in mind that Windows might not display the .zip file extension if the option "Hide extensions for known file types" is checked in your Windows folder options.

- 7. In the *BIONUMERICS Startup* window, press the button. From the menu that appears, select **Restore database...**.
- 8. Browse for the downloaded file and select *Create copy*. Note that, if *Overwrite* is selected, an existing database will be overwritten.
- 9. Specify a new name for this demonstration database, e.g. "Whole genome Staphylococcus aureus demobase".
- 10. Click < OK > to start restoring the database from the backup file (see Figure 2).

C:\	\Users\Downloads\wgMLST_SAUR1.bnbk Brov	vse
Des	stination	
	Overwrite	
0	Overwrite the current data in database WGS demo database for Escher coli with a previous version of the data as stored in a backup. Any new since the backup will disappear, any old data that was erased will be recovered.	ichia data
	Create copy	
۲	Create a new database from the data stored in a backup. Use this option have access to both old and current versions of an existing database or copy a database from another computer.	n to r to
Nev	w database name: Whole genome Staphyloco	

Figure 2: Restoring the whole genome demonstration database from the BioNumerics backup file wgMLST_SAUR.bnbk.

11. Once the process is complete, click < *Yes*> to open the database.

The *Main* window is displayed (see Figure 3).

3 Create a reference mapped sequence type

First, we will create a sequence type to store the reference mapped sequences in:

- 1. Click on the *Experiment types* panel to activate it and select *Edit* > *Create new object...* (+).
- 2. From the *Create a new experiment type* dialog box that pops up, select *Sequence type* and press <*OK*>.
- 3. In the New sequence type wizard, enter a Sequence type name (e.g. "My wgSNP").
- 4. Press <*Next*> (see Figure 4).

Figure 3: The Staphylococcus aureus demonstration database: the Main window.

Figure 4: New sequence type experiment.

5. Leave the default *Nucleic acid sequences* option checked and check the option *Use reference sequence as mapping template* (see Figure 5).

Figure 5: Use as mapping template.

6. Press < *Finish*> to create the reference mapped sequence type.

The reference mapped sequence type is added to the *Experiment types* panel.

4 Assign reference sequence

The first sequence that is imported in the reference mapped sequence type will automatically be assigned as the reference. The reference sequence might be a closed, fully annotated genome sequence (e.g. downloaded from an online repository such as NCBI), but could as well be a de novo assembled sequence, consisting of multiple contigs (i.e. a draft genome).

Tutorials are available on our website explaining how to import genome sequences (*File* > *Import...* (,, Ctrl+I), "Sequence data") and how to import and assemble sequence reads (*File* > *Import...* (,, Ctrl+I), "Sequence read sets").

In this tutorial, we will copy the sequence from the *denovo* experiment type of entry *ERR103401* to our new sequence type experiment so it serves as a reference sequence:

- 1. Click on the green dot in the *Experiment presence* panel that corresponds to the *denovo* experiment for entry *ERR103401*. In default configuration, the *denovo* experiment corresponds to the third column in the *Experiment presence* panel.
- 2. In the Sequence editor window that opens, select File > Save as... (Ctrl+Shift+S).

Create new sequence			?	×
Entry key:				
ERR103401				
Experiment:				
denovo SNP outbreak				
My wgSNP				
		_		

3. Highlight *My wgSNP* in the list and press < *OK* > (see Figure 6).

- Figure 6: Save sequence to a new sequence type experiment.
- 4. Close the Sequence editor window.

We can check if this sequence is indeed used as reference:

- 5. In the *Experiment types* panel, double-click on *My wgSNP* to open its *Sequence type* window: the reference sequence is displayed here (see Figure 7).
- 6. Close the Sequence type window.

Figure 7: The new sequence type experiment and the reference sequence.

5 Import sequence read sets

Entries that we want to analyze using wgSNP need a sequence experiment that is obtained via mapping to the reference sequence, as this ensures collinearity of the sequences. For this, we need to start from the corresponding sequence read sets.

The preferred way of importing sequence read sets in BIONUMERICS is with the *Import se-quence read set files as links* import routine (*File* > *Import...* (, Ctrl+I)). Importing sequence read sets as links is only possible when the *WGS tools plugin* is installed in the BIONUMERICS database (*File* > *Install / remove plugins...* (,)).

In our demonstration database, the *WGS tools plugin* is already installed and all read sets are imported as links:

1. Click on the green colored dot for one of the entries in the first column in the *Experiment presence* panel. Column 1 corresponds to the first experiment type listed in the *Experiment types* panel, which is **wgs** in the default configuration.

The data link is displayed in the Sequence read set experiment window (see Figure 8).

2. Close the Sequence read set experiment window.

Sequence read sets can also be stored inside the database with the *Import sequence read set files* import routine in the Import tree (*File* > *Import...* (, Ctrl+I)). One disadvantage of this option is the storage size of the sequence read sets.

6 Map sequence reads against the reference sequence

- 1. Select a few entries in the *Database entries* panel to include in the SNP analysis, using the ballot boxes next to the entries. Selected entries are marked by a checked ballot box: **_**.
- 2. Select *WGS tools* > *Submit jobs...* () to display the *Submit jobs* dialog box (see Figure 9).

🖆 ERR103403	-	×
File Preprocessing Analysis Window Help		
Sequence read set report		
Sequence read set information		
- Storage		
Storage by link: NCBI ERR103403		
- Read set size		
Number of sequences: 438522		
Number of paired-end sequences: 438522 Number of bases: 132433644, 1st end 65778300, 2nd end 66655344		
- Sequence length statistics		
Average sequence length: 151.00, 1st end 150.00, 2nd end 152.00		
Standard deviation of the sequence length: 1.00, 1st end 0, 2nd end 0		
Minimum sequence length: 150, 1st end 150, 2nd end 152 Maximum sequence length: 152, 1st end 150, 2nd end 152		
		\sim
Analyses Analysis info		
Field name Field	l value	•
Analysis name Analysis type 🗨		
< > <		>

Figure 8: Data link.

The **Submit jobs to** option deals with the location where the jobs will be sent to for execution: either to your **Own computer** or to the cloud **Calculation Engine**.

3. Since this tutorial covers wgSNP with mapping performed on the cloud calculation engine, make sure the *Calculation engine* option is selected.

The *Calculation engine* option requires credits for running jobs on the Applied Maths cloud calculation engine. Credits are linked to credentials that you need to enter when installing the *WGS tools plugin*. In our demo database, valid credentials have been specified during installation of the *WGS tools plugin*, but without linked credits.

- 4. Select the *My wgSNP* option as *Reference mapping* option (see Figure 9).
- 5. With the *My wgSNP* option highlighted, press the *<Settings*> button.

Following reference mappers are available on the cloud calculation engine: **SNAP** (default) and **Bowtie** (see Figure 10).

- 6. Make sure the correct reference mapper is selected and close the *Reference mapping settings* dialog box.
- 7. Back in the *Submit jobs* dialog box, check the credits needed to post the selected jobs for the selected entries and the credits that are available.

In our demo database, no credits are assigned to the demo project (*Credits available for job submission* is set to "0") so no reference mapping calculations can be performed on the external calculation engine.

8. Press < OK > to launch the jobs.

When sufficient credits are available to submit the selected reference mapping jobs on the external calculation engine, the *Job overview* window will open, in which the status of the jobs can be

Submit jobs	? ×
Submit jobs to: O Own computer Calculation Engine	
Algorithms	Reference mapping
My wgSNP SNP outbreak De novo assembly wgMLST assembly-based calls wgMLST assembly-free calls B- Annotation by Prokka	Performs a mapping of the sequence read sets to the reference genome defined in the 'My wgSNP' experiment Settings
Jobs	
Re-submit already processed data	
Open jobs overview window	
Credits available for job submission:	0
Credits needed to submit selected jobs:	2
Buy extra credits	
	OK Cancel

Figure 9: The Submit jobs dialog box.

My wgSNP			?	×				
Algorithm settings								
Algorithm:		\sim						
Min. total cov	Bowtie SNAP erage.	_						
Min. forward	Min. forward coverage: 1							
Min. reverse	Min. reverse coverage: 1							
Single base threshold: 0.75								
Double base	threshold:	0.85						
Triple base th	Triple base threshold: 0.95							
Gap threshold: 0.5								
Save algorithm settings as default								
	(ок	Ca	ncel				

Figure 10: Reference mappers.

followed (see Figure 11).

When insufficient credits are available, an error message will appear. Since no credits are assigned to the demo project, this error message will pop up when following this workflow in the demonstration database. Please consult Applied Maths for more information about the purchase of credits.

When a reference mapping is already present for the submitted entries (and the *Re-submit al-ready processed data* option was unchecked in the *Submit jobs* dialog box), an information message will appear, saying that no jobs are submitted to the calculation engine (see Figure 12).

There are two options available in the Job overview window to import the job results in your

-												
ć	Overv	iew								-		×
File	e Jobs	View Window H	Help									
>	< -	ျဖို့ ခြို့ျပ) ↓ All jobs		2							
0)verviev	w of submitted jobs										
	Туре	Name	Submitted time (UTC) Status	Message	Progress	Job type	Description	User	JobID		-
2	Entry	ERR101899	2020-05-25 10:21:3	1 Queued		0%	My wgSNP	Performs a mapping of the sequence	_DefaultUser_	a1e967d7-9d95-4e7	D-adae-757	
3	Entry	ERR103395	2020-05-25 10:21:3	0 Finished	Done	100%	My wgSNP	Performs a mapping of the sequence	_DefaultUser_	b8ae1a03-fe4e-49a6	-914f-30b0	
1	Entry	ERR103394	2020-05-25 10:21:2	6 Finished	Done	100%	My wgSNP	Performs a mapping of the sequence	_DefaultUser_	fff6612e-0e34-456e	8613-d25a	
	<											>
AI	obs: 3	All queued jobs: 1	All running jobs: 0	All finished jobs: 2	All failed jobs: 0							

Figure 11: Job overview.

Error		×
8	No jobs to submit!	
	ОК	

Figure 12: No jobs to submit.

BIONUMERICS database:

- Finished jobs can be imported with a manual action (*Jobs* > *Get results* ([®])) or through an automatic update: select *File* > *Settings*, check both options and specify an interval (e.g. 10 min).
- 10. Close the Job overview window.

The results of the mapping, i.e. the consensus sequences for the samples in the same frame as the reference sequence, are stored in the mapped sequence experiment type (here: **My wgSNP**).